972 resultados para engine particle number size distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-Ålesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, in-situ measurements of aerosol chemical composition, particle number size distribution, cloud-relevant properties and ground-based cloud observations were combined with high-resolution satellite sea surface chlorophyll-a concentration and air mass back-trajectory data to investigate the impact of the marine biota on aerosol physico-chemical and cloud properties. Studies were performed over the North-Eastern Atlantic Ocean, the central Mediterranean Sea, and the Arctic Ocean, by deploying both multi-year datasets and short-time scale observations. All the data were chosen to be representative of the marine atmosphere, reducing to a minimum any anthropogenic input. A relationship between the patterns of marine biological activity and the time evolution of marine aerosol properties was observed, under a variety of aspects, from chemical composition to number concentration and size distribution, up to the most cloud‐relevant properties. At short-time scales (1-2 months), the aerosol properties tend to respond to biological activity variations with a delay of about one to three weeks. This delay should be considered in model applications that make use of Chlorophyll-a to predict marine aerosol properties at high temporal resolution. The impact of oceanic biological activity on the microphysical properties of marine stratiform clouds is also evidenced by our analysis, over the Eastern North Atlantic Ocean. Such clouds tend to have a higher number of smaller cloud droplets in periods of high biological activity with respect to quiescent periods. This confirms the possibility of feedback interactions within the biota-aerosol-cloud climate system. Achieving a better characterization of the time and space relationships linking oceanic biological activity to marine aerosol composition and properties may significantly impact our future capability of predicting the chemical composition of the marine atmosphere, potentially contributing to reducing the uncertainty of future climate predictions, through a better understanding of the natural climate system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMPS and DMS500 analysers were used to measure particulate size distributions in the exhaust of a fully annular aero gas turbine engine at two operating conditions to compare and analyse sources of discrepancy. A number of different dilution ratio values were utilised for the comparative analysis, and a Dekati hot diluter operating at a temperature of 623°K was also utilised to remove volatile PM prior to measurements being made. Additional work focused on observing the effect of varying the sample line temperatures to ascertain the impact. Explanations are offered for most of the trends observed, although a new, repeatable event identified in the range from 417°K to 423°K – where there was a three order of magnitude increase in the nucleation mode of the sample – requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environment monitoring has an important role in occupational exposure assessment. However, due to several factors is done with insufficient frequency and normally don´t give the necessary information to choose the most adequate safety measures to avoid or control exposure. Identifying all the tasks developed in each workplace and conducting a task-based exposure assessment help to refine the exposure characterization and reduce assessment errors. A task-based assessment can provide also a better evaluation of exposure variability, instead of assessing personal exposures using continuous 8-hour time weighted average measurements. Health effects related with exposure to particles have mainly been investigated with mass-measuring instruments or gravimetric analysis. However, more recently, there are some studies that support that size distribution and particle number concentration may have advantages over particle mass concentration for assessing the health effects of airborne particles. Several exposure assessments were performed in different occupational settings (bakery, grill house, cork industry and horse stable) and were applied these two resources: task-based exposure assessment and particle number concentration by size. The results showed interesting results: task-based approach applied permitted to identify the tasks with higher exposure to the smaller particles (0.3 μm) in the different occupational settings. The data obtained allow more concrete and effective risk assessment and the identification of priorities for safety investments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle size distribution (PSD) in the soil profile is strongly related to erosion, deposition, and physical and chemical processes. Water cycling and plant growth are also affected by PSD. Material sedimented upstream of the dam constructions formed large areas of deposited farmland (DF) soils on the Chinese Loess Plateau (CLP), which has been the site of the most severe soil erosion in the world. Two DFs without tillage on the CLP were chosen to study the combined effect of erosion and check dams on PSD. Eighty-eight layers (each 10 cm thick) of filled deposited farmland (FDF) soils and 22 layers of silting deposited farmland (SDF) soils of each studied soil profile were collected and 932 soil samples were investigated using laser granulometry. The particle sizes were stratified in both DFs based on soil properties and erosion resistance. The obtained results of clay and silt fractions showed similar horizontal distribution, indicating parallel characteristics of erosion and deposition processes. Fine sand represented the largest fraction, suggesting the preferential detachment of this fraction. The most erodible range of particle sizes was 0.25-0.5 mm, followed by 0.2-0.25 mm in the studied soil profiles. The correlation between particle size and soil water contents tended to increase with increasing water contents in FDF. Due to the abundant shallow groundwater, the relationship between particle size and soil water content in SDF was lost. Further studies on PSD in the DF area are needed to enhance the conservation management of soil and water resources in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Pore Index (IPI) measures the pore system of carbonate (limestone and dolomite) rocks using pressurized water to infiltrate the pore system. This technique provides quantitative results for the primary and capillary (secondary) pores in carbonate rocks. These results are used in conjunction with chemical and mineralogical test results to calculate a quality number, which is used as a predictor of aggregate performance in Portland cement concrete (PCC) leading to the durability classification of the aggregate. This study had two main objectives: to determine the effect different aggregate size has on IPI test results and to establish the precision of IPI test and test apparatus. It was found that smaller aggregate size fractions could be correlated to the standard 1/2”-3/4” size sample. Generally, a particle size decrease was accompanied by a slight decrease in IPI values. The IPI testing also showed fairly good agreement of the secondary pore index number between the 1/2”-3/4”and the 3/8”-1/2” fraction. The #4-3/8” showed a greater difference of the secondary number from the 1/2”-3/4” fraction. The precision of the IPI test was established as a standard deviation (Sr) of 2.85 (Primary) and 0.87 (Secondary) with a repeatability limit (%r) of 8.5% and 14.9% for the primary and secondary values, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.