931 resultados para engine emission


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Päästöjen vähentäminen on ollut viime vuosina tärkeässä osassa polttomoottoreita kehitettäessä.Monet viralliset tahot asettavat uusia tiukempia päästörajoituksia. Päästörajatovat tyypillisesti olleet tiukimmat autoteollisuuden valmistamille pienille nopeakäyntisille diesel-moottoreille, mutta viime aikoina paineita on kohdistunut myös suurempiin keskinopeisiin ja hidaskäyntisiin diesel-moottoreihin. Päästörajat ovat erilaisia riippuen moottorin tyypistä, käytetystä polttoaineesta ja paikasta missä moottoria käytetään johtuen erilaisista paikallisista laeista ja asetuksista. Eniten huomiota diesel-moottorin päästöissä täytyy kohdistaa typen oksideihin, savun muodostukseen sekä partikkeleihin. Laskennallisen virtausmekaniikan (CFD) avulla on hyvät mahdollisuudet tutkia diesel-moottorin sylinterissä tapahtuvia ilmiöitä palamisen aikana. CFD on hyödyllinen työkalu arvioitaessa moottorin suorituskykyä ja päästöjen muodostumista. CFD:llä on mahdollista testata erilaisten parametrien ja geometrioiden vaikutusta ilman kalliita moottorinkoeajoja. CFD:tä voidaan käyttää myös opetustarkoituksessa lisäämään paloprosessin tuntemusta. Tulevaisuudessa palamissimuloinnit CFD:llä tulevat epäilemättä olemaan tärkeä osa moottorin kehityksessä. Tässä diplomityössä on tehty palamissimuloinnit kahteen erilaisilla poittoaineenruiskutuslaitteistoilla varustettuun Wärtsilän keskinopeaan diesel-moottoriin. W46 moottorin ruiskutuslaitteisto on perinteinen mekaanisesti ohjattu pumppusuutin ja W46-CR moottorissa on elektronisesti ohjattu 'common rail' ruiskutuslaitteisto. Näiden moottorien ja käytössä olevien ruiskutusprofiilien lisäksi on simuloinneilla testattu erilaisia uusia ruiskutusprofiileja, jotta erityyppisten profiilien hyvät ja huonot ominaisuudet tulisivat selville. Matalalla kuormalla kiinnostuksen kohteena on nokipäästöjen muodostus ja täydellä kuormalla NOx-päästöjen muodostus ja polttoaineen kulutus. Simulointien tulokset osoittivat, että noen muodostusta matalalla kuormalla voidaan selvästi vähentää monivaiheisella ruiskutuksella, jossa yksi ruiskutusjakso jaetaan kahteen tai useampaan jaksoon. Erityisen tehokas noen vähentämisessä vaikuttaa olevan ns. jälkiruiskutus (post injection). Matalat NOx-päästöt ja hyvä polttoaineen kulutus täydellä kuormalla on mahdollista saavuttaaasteittain nostettavalla ruiskutusnopeudella.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 1012 electron volts and are bright sources of very-high-energy (VHE) γ-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE γ-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Study of consumption rate and gaseous pollutant emission from engine tests simulating real work conditions, using spark point manually controlled and exhaust gas recirculation (EGR) in diverse proportion levels. The objective of this work is to re-examine the potential of the EGR conception, a well-known method of combustion control, employed together electronic fuel injection and three-way catalytic converter closed-loop control at a spark ignition engine, verifying the performance characteristics and technical availability of this conception to improve pollution control, fuel economy at low torque drive condition and to improve the engine exhaust components useful life. The pollutant emissions and consumption levels under operational conditions simulations were analysed and compared with the expected by concerning theory and real tests performed by EGR equipped engines by factory. Copyright © 2006 Society of Automotive Engineers, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report for the scientific sojourn at the University of Linköping between April to July 2007. Monitoring of the air intake system of an automotive engine is important to meet emission related legislative diagnosis requirements. During the research the problem of fault detection in the air intake system was stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem was solved using Interval-based Consistency Techniques. Interval-based consistency techniques are shown to be particularly efficient for checking the consistency of the Analytical Redundancy Relations (ARRs), dealing with uncertain measurements and parameters, and using experimental data. All experiments were performed on a four-cylinder turbo-charged spark-ignited SAAB engine located in the research laboratory at Vehicular System Group - University of Linköping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)