980 resultados para energy forecasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind energy is the energy source that contributes most to the renewable energy mix of European countries. While there are good wind resources throughout Europe, the intermittency of the wind represents a major problem for the deployment of wind energy into the electricity networks. To ensure grid security a Transmission System Operator needs today for each kilowatt of wind energy either an equal amount of spinning reserve or a forecasting system that can predict the amount of energy that will be produced from wind over a period of 1 to 48 hours. In the range from 5m/s to 15m/s a wind turbine’s production increases with a power of three. For this reason, a Transmission System Operator requires an accuracy for wind speed forecasts of 1m/s in this wind speed range. Forecasting wind energy with a numerical weather prediction model in this context builds the background of this work. The author’s goal was to present a pragmatic solution to this specific problem in the ”real world”. This work therefore has to be seen in a technical context and hence does not provide nor intends to provide a general overview of the benefits and drawbacks of wind energy as a renewable energy source. In the first part of this work the accuracy requirements of the energy sector for wind speed predictions from numerical weather prediction models are described and analysed. A unique set of numerical experiments has been carried out in collaboration with the Danish Meteorological Institute to investigate the forecast quality of an operational numerical weather prediction model for this purpose. The results of this investigation revealed that the accuracy requirements for wind speed and wind power forecasts from today’s numerical weather prediction models can only be met at certain times. This means that the uncertainty of the forecast quality becomes a parameter that is as important as the wind speed and wind power itself. To quantify the uncertainty of a forecast valid for tomorrow requires an ensemble of forecasts. In the second part of this work such an ensemble of forecasts was designed and verified for its ability to quantify the forecast error. This was accomplished by correlating the measured error and the forecasted uncertainty on area integrated wind speed and wind power in Denmark and Ireland. A correlation of 93% was achieved in these areas. This method cannot solve the accuracy requirements of the energy sector. By knowing the uncertainty of the forecasts, the focus can however be put on the accuracy requirements at times when it is possible to accurately predict the weather. Thus, this result presents a major step forward in making wind energy a compatible energy source in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

70.00% 70.00%

Publicador:

Resumo:

EU Directive 2009/28/EC on Renewable Energy requires each Member State to ensure 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020 (10% RES-T target). In addition to the anticipated growth in biofuels, this target is expected to be met by the increased electrification of transport coupled with a growing contribution from renewable energy to electricity generation. Energy use in transport accounted for nearly half of Ireland’s total final energy demand and about a third of energy-related carbon dioxide emissions in 2007. Energy use in transport has grown by 6.3% per annum on average in the period 1990 – 2007. This high share and fast growth relative to other countries highlights the challenges Ireland faces in meeting ambitious renewable energy targets. The Irish Government has set a specific target for Electric Vehicles (EV) as part of its strategy to deliver the 10% RES-T target. By 2020, 10% of all vehicles in its transport fleet are to be powered by electricity. This paper quantifies the impacts on energy and carbon dioxide emissions of this 10% EV target by 2020. In order to do this an ‘EV Car Stock’ model was developed to analyse the historical and future make-up of the passenger car portion of the fleet to 2025. Three scenarios for possible take-up in EVs were examined and the associated energy and emissions impacts are quantified. These impacts are then compared to Ireland’s 10% RES-T target and greenhouse gas (GHG) emissions reduction targets for 2020. Two key findings of the study are that the 10% EV target contributes 1.7% to the 10% RES-T target by 2020 and 1.4% to the 20% reduction in Non-ETS emissions by 2020 relative to 2005.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta a utilização alguns modelos matemáticos disponíveis na literatura para representar as etapas de processamento da energia em um Sistema Fotovoltaico Conectado à Rede Elétrica (SFCR). Além disso, propõem-se dois modelos representativos do comportamento da potência elétrica em situações de limitação de potência do inversor e das perdas elétricas em função do carregamento. Todas as modelagens estão implementadas computacionalmente no ambiente GUIDE do MATLAB, o que permite a análise, auxilia no dimensionamento e viabiliza a simulação da operacionalidade e consequente contribuição energética de SFCRs com diferentes tamanhos relativos. No trabalho ainda é mostrada a interface da ferramenta computacional desenvolvida e a validação dos dados gerados pelo programa com dados medidos experimentalmente de SFCRs, a qual evidencia a eficácia dos modelos utilizados e a melhora na precisão. Ao final são mostradas estimativas energéticas para cinco cidades brasileiras, além de exemplos de análise dos dados gerados pela ferramenta computacional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main goal of this work is to determine the true cost incurred by the Republic of Ireland and Northern Ireland in order to meet their EU renewable electricity targets. The primary all-island of Ireland policy goal is that 40% of electricity will come from renewable sources in 2020. From this it is expected that wind generation on the Irish electricity system will be in the region of 32-37% of total generation. This leads to issues resulting from wind energy being a non-synchronous, unpredictable and variable source of energy use on a scale never seen before for a single synchronous system. If changes are not made to traditional operational practices, the efficient running of the electricity system will be directly affected by these issues in the coming years. Using models of the electricity system for the all-island grid of Ireland, the effects of high wind energy penetration expected to be present in 2020 are examined. These models were developed using a unit commitment, economic dispatch tool called PLEXOS which allows for a detailed representation of the electricity system to be achieved down to individual generator level. These models replicate the true running of the electricity system through use of day-ahead scheduling and semi-relaxed use of these schedules that reflects the Transmission System Operator's of real time decision making on dispatch. In addition, it carefully considers other non-wind priority dispatch generation technologies that have an effect on the overall system. In the models developed, three main issues associated with wind energy integration were selected to be examined in detail to determine the sensitivity of assumptions presented in other studies. These three issues include wind energy's non-synchronous nature, its variability and spatial correlation, and its unpredictability. This leads to an examination of the effects in three areas: the need for system operation constraints required for system security; different onshore to offshore ratios of installed wind energy; and the degrees of accuracy in wind energy forecasting. Each of these areas directly impact the way in which the electricity system is run as they address each of the three issues associated with wind energy stated above, respectively. It is shown that assumptions in these three areas have a large effect on the results in terms of total generation costs, wind curtailment and generator technology type dispatch. In particular accounting for these issues has resulted in wind curtailment being predicted in much larger quantities than had been previously reported. This would have a large effect on wind energy companies because it is already a very low profit margin industry. Results from this work have shown that the relaxation of system operation constraints is crucial to the economic running of the electricity system with large improvements shown in the reduction of wind curtailment and system generation costs. There are clear benefits in having a proportion of the wind installed offshore in Ireland which would help to reduce variability of wind energy generation on the system and therefore reduce wind curtailment. With envisaged future improvements in day-ahead wind forecasting from 8% to 4% mean absolute error, there are potential reductions in wind curtailment system costs and open cycle gas turbine usage. This work illustrates the consequences of assumptions in the areas of system operation constraints, onshore/offshore installed wind capacities and accuracy in wind forecasting to better inform the true costs associated with running Ireland's changing electricity system as it continues to decarbonise into the near future. This work also proposes to illustrate, through the use of Ireland as a case study, the effects that will become ever more prevalent in other synchronous systems as they pursue a path of increasing renewable energy generation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper characterizes the dynamics of jumps and analyzes their importance for volatility forecasting. Using high-frequency data on four prominent energy markets, we perform a model-free decomposition of realized variance into its continuous and discontinuous components. We find strong evidence of jumps in energy markets between 2007 and 2012. We then investigate the importance of jumps for volatility forecasting. To this end, we estimate and analyze the predictive ability of several Heterogenous Autoregressive (HAR) models that explicitly capture the dynamics of jumps. Conducting extensive in-sample and out-of-sample analyses, we establish that explicitly modeling jumps does not significantly improve forecast accuracy. Our results are broadly consistent across our four energy markets, forecasting horizons, and loss functions

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.