14 resultados para endothermy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With some notable exceptions, small ectothermic vertebrates are incapable of endogenously sustaining a body temperature substantially above ambient temperature. This view was challenged by our observations of nighttime body temperatures sustained well above ambient (up to 10°C) during the reproductive season in tegu lizards (~2 kg). This led us to hypothesize that tegus have an enhanced capacity to augment heat production and heat conservation. Increased metabolic rates and decreased thermal conductance are the same mechanisms involved in body temperature regulation in those vertebrates traditionally acknowledged as “true endotherms” : the birds and mammals. The appreciation that a modern ectotherm the size of the earliest mammals can sustain an elevated body temperature through metabolic rates approaching that of endotherms enlightens the debate over endothermy origins, providing support for the parental care model of endothermy, but not for the assimilation capacity model of endothermy. It also indicates that, contrary to prevailing notions, ectotherms can engage in facultative endothermy, providing a physiological analog in the evolutionary transition to true endothermy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We thank Sean Tracey and Jaime McAllister for supplying albacore and southern bluefin tuna samples, Eva Giacomello for collecting the skipjack tuna sample, Elena Sarropoulou for providing the Atlantic bonito assembly, Helen Hipperson for assistance in the lab, Barbara Block and Ziheng Yang for advice, the editors and reviewers for comments, and the Leverhulme Trust and BBSRC for funding

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined questions concerning differences in the acyl composition of membrane phospholipids that have been linked to the faster rates of metabolic processes in endotherms versus ectotherms. In liver, kidney, heart and brain of the ectothermic reptile, Trachydosaurus rugosus, and the endothermic mammal, Rattus norvegicus, previous findings of fewer unsaturates but a greater unsaturation index (UI) in membranes of the mammal versus those of the reptile were confirmed. Moreover, the study showed that the distribution of phospholipid head-group classes was similar in the same tissues of the reptile and mammal and that the differences in acyl composition were present in all phospholipid classes analysed, suggesting a role for the physical over the chemical properties of membranes in determining the faster rates of metabolic processes in endotherms. The most common phosphatidylcholine (PC) molecules present in all tissues (except brain) of the reptile were 16:0/18:1, 16:0/18:2, 18:0/18:2, 18:1/18:1 and 18:1/18:2, whereas arachidonic acid (20:4), containing PCs 16:0/ 20: 4, 18: 0/ 20: 4, were the common molecules in the mammal. The most abundant phosphatidylethanolamines ( PE) used in the tissue of the reptile were 18:0/18:2, 18:0/20:4, 18:1/18:1, 18:1/18:2 and 18:1/20:4, compared to 16: 0/ 18: 2, 16: 0/ 20: 4, 16: 0/ 22: 6, 18: 0/ 20: 4, 18: 0/ 22: 6 and 18:1/20: 4 in the mammal. UI differences were primarily due to arachidonic acid found in both PC and PEs, whereas docosahexaenoic acid (22:6) was a lesser contributor mainly within PEs and essentially absent in the kidney. The phospholipid composition of brain was more similar in the reptile and mammal compared to those of other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although heterothermy (hibernation and torpor) is a common feature among mammals, there is debate over whether it is a derived or ancestral trait relative to endothermic homeothermy. Determination of the physiological characteristics of primitive mammals is central to understanding the evolution of endothermy. Moreover, evaluation of physiological mechanisms responsible for endothermic heat production [e.g. non-shivering thermogenesis (NST)] is key to understanding how early mammals responded to historical climate changes and colonised different geographical regions. Here we investigated the capacity for NST and heterothermy in the Hottentot golden mole, a basal eutherian mammal. NST was measured as the metabolic response to injections of noradrenalin and heterothermy by recording body temperature in free-ranging animals. We found that hibernation and torpor occurred and that the seasonal phenotypic adjustment of NST capacity was similar to that found in other placental mammals. Using phylogenetically independent contrasts, we compared measured values of NST with those obtained from the literature. This showed that all variation in NST was accounted for by differences in phylogeny and not zoogeography. These findings lend support to the observation that NST and heterothermy occur in the Afrotheria, the basal placental mammalian clade. Furthermore, this work suggests that heterothermy, rather than homeothermy is a plesiomorphic trait in mammals and supports the notion that NST mechanisms are phylogenetically ancient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some snakes have a feeding regime characterized by the infrequent ingestion of relatively large meals, causing impressive increments in post-prandial metabolism. Metabolism remains elevated for many days, while digestion proceeds, resulting in considerable investment of time and energy. Snakes actively adjust thermoregulatory behavior to raise their body temperature during digestion, exhibiting a post-prandial thermophilic response that accelerates digestion at the expense of higher metabolic rates. In the present study, we investigated the possibility that endogenously derived heat, originating as a byproduct of the post-prandial increase in metabolism, could itself contribute to the elevated body temperature during digestion in the South American rattlesnake Crotalus durissus. We assessed heat production, at a constant environmental temperature, by taking infrared (IR) images of snakes during fasting and after being fed meals varying from 10% to 50% of their own body masses. Our results show clearly that digesting rattlesnakes have significantly increased body temperatures, even when precluded from adjusting their thermoregulatory behavior. The feeding-derived thermogenesis caused the surface body temperature of rattlesnakes to increase by 0.9-1.2degreesC, a temperature change that will significantly affect digestive performance. The alterations in body temperature following feeding correlated closely with the temporal profile of changes in post-prandial metabolism. Moreover, the magnitude of the thermogenesis was greater for snakes fed large meals, as was the corresponding metabolic response. Since IR imaging only assesses surface temperatures,, the magnitude of the thermogenesis and the changes in deep core temperature could be even more pronounced than is reported here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In endotherms insects, the thermoregulatory mechanisms modulate heat transfer from the thorax to the abdomen to avoid overheating or cooling in order to obtain a prolonged flight performance. Scarabaeus sacer and S. cicatricosus, two sympatric species with the same habitat and food preferences, showed daily temporal segregation with S. cicatricosus being more active during warmer hours of the day in opposition to S. sacer who avoid it. In the case of S. sacer, their endothermy pattern suggested an adaptive capacity for thorax heat retention. In S. cicatricosus, an active ‘heat exchanger’ mechanism was suggested. However, no empirical evidence had been documented until now. Thermographic sequences recorded during flight performance showed evidence of the existence of both thermoregulatory mechanisms. In S. sacer, infrared sequences showed a possible heat insulator (passive thermal window), which prevents heat transfer from meso- and metathorax to the abdomen during flight. In S. cicatricosus, infrared sequences revealed clear and effective heat flow between the thorax and abdomen (abdominal heat transfer) that should be considered the main mechanism of thermoregulation. This was related to a subsequent increase in abdominal pumping (as a cooling mechanism) during flight. Computer microtomography scanning, anatomical dissections and internal air volume measurements showed two possible heat retention mechanisms for S. sacer; the abdominal air sacs and the development of the internal abdominal sternites that could explain the thermoregulation between thorax and abdomen. Our results suggest that interspecific interactions between sympatric species are regulated by very different mechanisms. These mechanisms create unique thermal niches for the different species, thereby preventing competition and modulating spatio-temporal distribution and the composition of dung beetle assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physiological, anatomical, and developmental features of the crocodilian heart support the paleontological evidence that the ancestors of living crocodilians were active and endothermic, but the lineage reverted to ectothermy when it invaded the aquatic, ambush predator niche. In endotherms, there is a functional nexus between high metabolic rates, high blood flow rates, and complete separation of high systemic blood pressure from low pulmonary blood pressure in a four-chambered heart. Ectotherms generally lack all of these characteristics, but crocodilians retain a four-chambered heart. However, crocodilians have a neurally controlled, pulmonary bypass shunt that is functional in diving. Shunting occurs outside of the heart and involves the left aortic arch that originates from the right ventricle, the foramen of Panizza between the left and right aortic arches, and the cog-tooth valve at the base of the pulmonary artery. Developmental studies show that all of these uniquely crocodilian features are secondarily derived, indicating a shift from the complete separation of blood flow of endotherms to the controlled shunting of ectotherms. We present other evidence for endothermy in stem archosaurs and suggest that some dinosaurs may have inherited the trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large and powerful ocean predators such as swordfishes, some tunas, and several shark species are unique among fishes in that they are capable of maintaining elevated body temperatures (endothermy) when hunting for prey in deep and cold water [1-3]. In these animals, warming the central nervous system and the eyes is the one common feature of this energetically costly adaptation [4]. In the swordfish (Xiphias gladius), a highly specialized heating system located in an extraocular muscle specifically warms the eyes and brain up to 10degreesC-15degreesC above ambient water temperatures [2, 5]. Although the function of neural warming in fishes has been the subject of considerable speculation [1, 6, 7], the biological significance of this unusual ability has until now remained unknown. We show here that warming the retina significantly improves temporal resolution, and hence the detection of rapid motion, in fast-swimming predatory fishes such as the swordfish. Depending on diving depth, temporal resolution can be more than ten times greater in these fishes than in fishes with eyes at the same temperature as the surrounding water. The enhanced temporal resolution allowed by heated eyes provides warm-blooded and highly visual oceanic predators, such as swordfishes, tunas, and sharks, with a crucial advantage over their agile, cold-blooded prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from diverse studies endorse ideas that short term torpor and hibernation are expressions of ancient characters. In evolutionary terms, their basic mechanisms are probably plesiomorphic (= ancestral/primitive) and physiologically similar. This contrasts with the alternate view that they are apomorphic (= derived, specialized), arising independently in many taxa from homeothermic ancestry by numerous apparent convergences. This paper explores some of the implications of accepting the plesiomorphic interpretation. Hibernation is, of course, a complex phenomenon that has undergone variations and refinements in different mammalian lineages. The argument is not that hibernation in total is a plesiomorphic character, but that it is built upon fundamental processes that are. Taking this view provides a framework for research that emphasizes the value of comparative studies, particularly of reptiles and birds. Studies of reptiles, for example, might unravel the mystery about periodic arousals. A plesiomorphic framework also explains the most extreme examples of hibernation as derived specializations from ancestry in which heterothermy is more about energy management than escape from cold. It cautions against using low body temperature (Tb) alone to diagnose torpor, emphasizes the need to distinguish between constitutional eurythermy (plesiomorphic) and constitutional stenothermy (apomorphic), and leads to a parsimonious theory about the evolution of endothermy. The paper proposes that brown adipose tissue (BAT) is apomorphic within eutheria and highlights the conundrum posed by the occurrence of both nonshivering thermogenesis (NST) and rapid arousal from hibernation in noneutherian mammals that lack BAT and uncoupling protein 1 (UCP1). It endorses the likely existence of a different, ancient and widespread mechanism for regulatory NST in mammals.