959 resultados para endothelium
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Resumo:
The aim of this study was to examine the endothelial surface morphology and perform a morphometric analysis of the corneal endothelial cells of ostrich (Struthio camelus) using scanning electron microscopy. Polygonality, mean cell area, cell density and coefficient of variation of mean cell area were analyzed. The normal corneal endothelium consisted of polygonal cells of uniform size and shape with few interdigitations of the cell borders. Microvilli appeared as protusions on the cellular surface. The average cell area was 269±18µm² and the endothelial cell density was 3717±240cells mm-2. The coefficient of variation of the cell area was 0.06, and the percentage of hexagonal cells was 75%. The parameters evaluated did not differ significantly between the right and the left eye from the same ostrich. The results of this study showed that the ostrich corneal endothelial cells appear quite similar to those of the other vertebrates.
Resumo:
Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, is a major cause of fetal and maternal morbidity and mortality especially in developing countries. Bj-PRO-10c, a proline-rich peptide isolated from Bothrops jararaca venom, has been attributed with potent anti-hypertensive effects. Recently, we have shown that Bj-PRO-10c-induced anti-hypertensive actions involved NO production in spontaneous hypertensive rats. Using in vitro studies we now show that Bj-PRO-10c was able to increase NO production in human umbilical vein endothelial cells from hypertensive pregnant women (HUVEC-PE) to levels observed in HUVEC of normotensive women. Moreover, in the presence of the peptide, eNOS expression as well as argininosuccinate synthase activity, the key rate-limiting enzyme of the citrulline-NO cycle, were enhanced. In addition, excessive superoxide production due to NO deficiency, one of the major deleterious effects of the disease, was inhibited by Bj-PRO-10c. Bj-PRO-10c induced intracellular calcium fluxes in both, HUVEC-PE and HUVEC, which, however, led to activation of eNOS expression only in HUVEC-PE. Since Bj-PRO-10c promoted biological effects in HUVEC from patients suffering from the disorder and not in normotensive pregnant women, we hypothesize that Bj-PRO-10c induces its anti-hypertensive effect in mothers with preeclampsia. Such properties may initiate the development of novel therapeutics for treating preeclampsia.
Resumo:
Aim: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. Methods: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2 x 10(-5) M) and methyl-B-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M), in the presence and absence of DMB (2 x 10(-5) M). Results: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+). exchanger (NCX), and partially blunted by the caveolae disassembly. Conclusions: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We tested the hypothesis that at the early phase of acute lung injury (ALI) the degree of endothelium injury may predict lung parenchyma remodelling For this purpose, two models of extrapulmonary ALI induced by Escherichia col: lipopolysaccharide (ALI-LPS) or cecal ligation and puncture (ALI-CLP) were developed in mice At day 1, these models had similar degrees of lung mechanical compromise, epithelial damage, and intraperitoneal inflammation, but endothelial lesion was greater in ALI-CLP A time course analysis revealed, at day 7 ALI-CLP had higher degrees of epithelial lesion, denudation of basement membrane, endothelial damage, elastic and collagen fibre content, neutrophils in bronchoalveolar lavage fluid (BALF), peritoneal fluid and blood, levels of interleukin-6, KC (murine analogue of IL-8), and transforming growth factor-beta in BALF Conversely, the number of lung apoptotic cells was similar in both groups In conclusion, the intensity of fibroelastogenesis was affected by endothelium injury in addition to the maintenance of epithelial damage and intraperitoneal inflammation. (C) 2010 Elsevier B V All rights reserved
Resumo:
Endothelial dysfunction has been linked to a decrease in nitric oxide (NO) bioavailability and attenuated endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation. The small (SK(Ca)) and intermediate (IK(Ca)) calcium-activated potassium channels play a key role in endothelium-dependent relaxation. Because the repressor element 1-silencing transcription factor (REST) negatively regulates IK(Ca) expression, we hypothesized that augmented REST and decreased IK(Ca) expression contributes to impaired endothelium-dependent vasodilation associated with hypertension. Acetylcholine (ACh) responses were slightly decreased in small mesenteric arteries from male stroke-prone spontaneously hypertensive rats (SHRSPs) versus arteries from Wistar Kyoto (WKY) rats. Incubation with N-nitro-L-arginine methyl ester (L-NAME; 100 mu mol/L) and indomethacin (100 mu mol/L) greatly impaired ACh responses in vessels from SHRSP. lberiotoxin (0.1 mu mol/L), which is a selective inhibitor of large-conductance K(Ca) (BK(Ca)) channels, did not modify EDHF-mediated vasodilation in SHRSP or WKY. UCL-1684 (0.1 mu mol/L.), which is a selective inhibitor of SKCa channels, almost abolished EDHF-mediated vasodilation in WKY and decreased relaxation in SHRSP. 1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole (TRAM-34; 10 mu mol/L) and charybdotoxin (0.1 mu mol/L), which are both IKCa inhibitors, produced a small decrease of EDHF relaxation in WKY but completely abrogated EDHF vasodilation in SHRSP. EDHF-mediated relaxant responses were completely abolished in both groups by simultaneous treatment with UCL-1684 and TRAM-34 or charybdotoxin. Relaxation to SK(Ca)/IK(Ca) channels agonist NS-309 was decreased in SHRSP arteries. The expression of SK(Ca) was decreased, whereas IK(Ca) was increased in SHRSP mesenteric arteries. REST expression was reduced in arteries from SHRSP. Vessels incubated with TRAM-34 (10 mu mol/L) for 24h displayed reduced REST expression and demonstrated no differences in IK(Ca). In conclusion, IK(Ca) channel upregulation, via decreased REST, seems to compensate deficient activity of SK(Ca) channels in the vasculature of spontaneously hypertensive rats. (Translational Research 2009; 154:183-193)
Resumo:
Compound 48/80 (C48/80) is a synthetic condensation product of N-methyl-p-methoxyphenethyl am me with formaldehyde and is an experimental drug used since the 1950s to induce anaphylactic shock through histamine release. This study was carried out to further elucidate the mechanism by which this drug induces nitric oxide (NO) release. Our specific goals were: (a) to verify if C48/80`s relaxation occurs through the stimulation of histamine receptors; (b) to evaluate the endothelium-dependent relaxation induced by C48/80; (c) to identify NO as the endothelium-relaxing factor released by C48/80; (d) to identify the NO synthase (NOS) responsible for NO release; and (e) to verify if the relaxation induced by C48/80 is calcium and cyclic guanidine monophosphate (cGMP) dependent. Rabbit aorta segments, with and without endothelium, were suspended in organ chambers (25 ml) filled with Krebs solution maintained at 37 degrees C, bubbled with 95% O-2/5% CO2 (pH 7.4). Phenylephrine was used to contract the segments. Other protocol drugs included H-1- and H-2-receptor antagonists, cyclooxygenase, NOS, guanylyl cyclase and phospholipase C (PLC) inhibitors. Endothelium-dependent relaxation induced by C48/80 was also studied in calcium-free Krebs solution associated with a calcium chelator. In summary, our investigation demonstrated that the C48/80 vasodilating action: (a) does not depend on H-1 and H-2 histamine receptors; (b) is NO endothelium-dependent; (c) is dependent on the endothelial constitutive NOS (NOS-3) isoform activation; (d) is cGMP-dependent; and that NOS-3 activation by C48/80: (a) is independent of PLC up to 25 mu g/ml and (b) is partially dependent of this lipase in higher doses. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
High doses of diazepam reduce the inflammatory paw edema in rats. This effect was attributed to an action of diazepam on the Translocator Protein (TSPO). We evaluated the effects of diazepam (10 mg/kg, intraperitoneally) on leukocyte rolling and migration. In carrageenan-induced acute inflammation, diazepam decreased the interaction of leukocytes with endothelial cells (rolling) and the number of leukocytes in the mesentery (migration). RU486 (antagonist of glucocorticoid receptors) reduced the effects of diazepam on leukocyte rolling and migration, suggesting a participation of endogenous corticosteroids. We also showed that the effects of diazepam on leukocyte-endothelium interactions are mediated by nitric oxide (NO), since prior treatment with l-arginine (precursor of NO) partially precludes the inhibitory effects of diazepam; conversely, pretreatment with L-NAME (false substrate of the NO synthase) somewhat potentiates the effects of diazepam. The pathways that underlie the effects of diazepam remain to be further elucidated, but we believe that both local and systemic mechanisms may overlap to explain the influence of diazepam on leukocyte-endothelium interactions.
Resumo:
Studies on mechanisms underlying the differentiation of dental pulp stem cells are critical for the understanding of the biology of odontogenesis and for dental tissue engineering. Here, we tested the hypothesis that stem cells from exfoliated deciduous teeth (SHED) differentiate into functional odontoblasts and endothelial cells. SHED were seeded in tooth slice/scaffolds and implanted subcutaneously into immunodeficient mice. SHED differentiated into functional odontoblasts that generated tubular dentin, as determined by tetracycline staining and confocal microscopy. These cells also differentiated into vascular endothelial cells, as determined by beta-galactosidase staining of LacZ-tagged SHED. In vitro, vascular endothelial growth factor (VEGF) induced SHED to express VEGFR2, CD31, and VE-Cadherin (markers of endothelium) and to organize into capillary-like sprouts. VEGF induced ERK and AKT phosphorylation (indicative of differentiation), while inhibiting phosphorylation of STAT3 (indicative of `stemness`). Collectively, this work demonstrates that SHED can differentiate into angiogenic endothelial cells and odontoblasts capable of generating tubular dentin.
Resumo:
Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 µΜ) on the pressor response to phenylephrine (PHE) in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusion and mean perfusion pressure measurements. Endothelium and vascular smooth muscle relaxation were tested with acetylcholine (5 µg/100 µL) and sodium nitroprusside (0.1 µg/100 µL), respectively, in arteries precontracted with 0.1 µM PHE. Concentration-response curves to PHE (0.001-300 µg/100 µL) were constructed before and after perfusion for 1 h with 100 µΜ lead acetate. In the presence of endothelium (E+), lead acetate increased maximal response (Emax) (control: 364.4 ± 36, Pb2+: 480.0 ± 27 mmHg; P < 0.05) and the sensitivity (pD2; control: 1.98 ± 0.07, 2.38 ± 0.14 log mM) to PHE. In the absence of endothelium (E-) lead had no effect but increased baseline perfusion pressure (E+: 79.5 ± 2.4, E-: 118 ± 2.2 mmHg; P < 0.05). To investigate the underlying mechanisms, this protocol was repeated after treatment with 100 µM L-NAME, 10 µM indomethacin and 1 µM tempol in the presence of lead. Lead actions on Emax and pD2 were abolished in the presence of indomethacin, and partially abolished with L-NAME and tempol. Results suggest that acute lead administration affects the endothelium, releasing cyclooxygenase-derived vasoconstrictors and involving reactive oxygen species.
Resumo:
OBJECTIVE: To study the mechanism by which poly-L-arginine mediates endothelium-dependent relaxation. METHODS: Vascular segments with and without endothelium were suspended in organ chambers filled with control solution maintained at 37ºC and bubbled with 95% O2 / 5% CO2. Used drugs: indomethacin, acetycholine, EGTA, glybenclamide, ouabain, poly-L-arginine, methylene blue, N G-nitro-L-arginine, and verapamil and N G-monomethyl-L-arginine. Prostaglandin F2á and potassium chloride were used to contract the vascular rings. RESULTS: Poly-L-arginine (10-11 to 10-7 M) induced concentration-dependent relaxation in coronary artery segments with endothelium. The relaxation to poly-L-arginine was attenuated by ouabain, but was unaffected by glybenclamide. L-NOARG and oxyhemoglobin caused attenuation, but did not abolish this relaxation. Also, the relaxations was unaffected by methylene blue, verapamil, or the presence of a calcium-free bathing medium. The endothelium-dependent to poly-L-arginine relaxation was abolished only in vessels contracted with potassium chloride (40 mM) in the presence of L-NOARG and indomethacin. CONCLUSION: These experiments indicate that poly-L-arginine induces relaxation independent of nitric oxide.
Resumo:
Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease.
Resumo:
Upon agonist stimulation, endothelial cells trigger smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). Endothelial cells of mouse aorta are interconnected by gap junctions made of connexin40 (Cx40) and connexin37 (Cx37), allowing the exchange of signaling molecules to coordinate their activity. Wild-type (Cx40(+/+)) and hypertensive Cx40-deficient mice (Cx40(-/-)), which also exhibit a marked decrease of Cx37 in the endothelium, were used to investigate the link between the expression of endothelial connexins (Cx40 and Cx37) and endothelial nitric oxide synthase (eNOS) expression and function in the mouse aorta. With the use of isometric tension measurements in aortic rings precontracted with U-46619, a stable thromboxane A(2) mimetic, we first demonstrate that ACh- and ATP-induced endothelium-dependent relaxations solely depend on NO release in both Cx40(+/+) and Cx40(-/-) mice, but are markedly weaker in Cx40(-/-) mice. Consistently, both basal and ACh- or ATP-induced NO production were decreased in the aorta of Cx40(-/-) mice. Altered relaxations and NO release from aorta of Cx40(-/-) mice were associated with lower expression levels of eNOS in the aortic endothelium of Cx40(-/-) mice. Using immunoprecipitation and in situ ligation assay, we further demonstrate that eNOS, Cx40, and Cx37 tightly interact with each other at intercellular junctions in the aortic endothelium of Cx40(+/+) mice, suggesting that the absence of Cx40 in association with altered Cx37 levels in endothelial cells from Cx40(-/-) mice participate to the decreased levels of eNOS. Altogether, our data suggest that the endothelial connexins may participate in the control of eNOS expression levels and function.
Resumo:
Nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP-1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene transfer of human endothelial NO synthase (eNOS) and of a N-terminal deletion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arteriosclerosis-prone, apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-dependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5-week follow-up (p < 0.05). In contrast, 8ND-MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium-dependent vasodilation and inhibits lesion formation in ApoE(-/-) mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long-term efficacy of eNOS gene therapy for primary arteriosclerosis.
Resumo:
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.