590 resultados para endodontics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral trioxide aggregate (MTA) is a clinical product comprising a mixture of Portland cement and bismuth oxide which is currently used as a root−filling material in dentistry. It has good biological compatibility, is capable of promoting both osteogenesis and cementogensis, and is finding increasing use in endodontic therapy. It is dimensionally stable, and provides an acceptable and durable seal for endodontically treated teeth. This article reviews the chemistry and applications of MTA, and highlights the fact that very little is currently known about the hydration chemistry, phase evolution and stability of this cement in physiological environments. However, biological effects of MTA have been well documented and are considered in detail. The article concludes that this material is a useful addition to the range of materials available for clinical application in endodontics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial activity of four root canal sealers (AH Plus, Sealapex, Ketac Endo, and Fill Canal), two calcium hydroxide pastes (Calen and Calasept), and a zinc oxide paste was evaluated. Seven bacterial strains were used, six of them standard; Micrococcus luteus ATCC 9341, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 25922, and Enterococcus faecalis ATCC 10541. There was a wild strain of Streptococcus mutans isolated from saliva obtained in an adult dental clinic. Activity was evaluated using the agar diffusion method with Brain Heart Infusion agar and Müller Hinton medium seeded by pour plate. Calcium hydroxide-based sealers and pastes were either placed directly into 4.0 × 4.0 mm wells or by using absorbent paper points. The plates were kept at room temperature for 2 hr for diffusion. After incubation at 37°C for 24 hr, the medium was optimized with 0.05 g% TTC gel and inhibition haloes were measured. All bacterial strains were inhibited by all materials using the well method. However, when the materials were applied with absorbent paper points, Enterococcus faecalis was not inhibited by zinc oxide, and Pseudomonas aeruginosa was not inhibited by AH Plus, Fill Canal, and the zinc oxide-based paste. We conclude that sealers and pastes presented antimicrobial activity in vitro and culture medium optimization with 0.05 g% TTC gel facilitated observation of the inhibition haloes. Copyright © 2000 by The American Association of Endodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the pH and antimicrobial activity of micro or nanoparticulate zinc oxide (ZnO) pastes with or without calcium hydroxide (CH). The following medications were evaluated: microparticulate ZnO + polyethylene glycol (PEG) 400; nanoparticulate ZnO + PEG 400; PEG 400; CH + microparticulate ZnO + PEG 400 and CH + nanoparticulate ZnO + PEG 400. The pH was assessed between 12 hours and 28 days, using a digital pH meter. The antimicrobial activity against Enterococcus faecalis (ATCC-9212), Candida albicans (ATCC-10231), Pseudomonas aeruginosa (ATCC-27853), Staphylococcus aureus (ATCC-6538) and Kocuria rhizophila (ATCC-9341) was determined in triplicate using agar diffusion test. The results were submitted to Kruskal-Wallis/Dunn and ANOVA/Tukey tests with 5% significance. The highest pH values were found for CH+ZnO, with higher values for nanoparticulate ZnO after 12 hours and 21 days (p<0.05). CH+ZnO medication promoted higher growth inhibition against P. aeruginosa and lower against E. faecalis. Calcium hydroxide pastes have higher pH and antimicrobial activity when associated with either micro- or nanoparticulate zinc oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analysed the effect of pastes formulated with calcium hydroxide P.A. and different vehicles (saline solution - paste A and Copaifera langsdorffii Desfon oil - paste B) on oral microorganisms and dentin bridge formation in dogs. The antimicrobial action of the pastes and their components was analysed by the minimum inhibitory concentration in agar gel technique. The components were diluted and tested on fifteen standard strains of microorganisms associated with endodontic diseases. The microorganisms were cultivated and after incubation data was analysed using One-Way ANOVA and Turkey's test (P≤0.05). Four superior incisors of ten animals were used to evaluate dentin bridge formation. Two incisors were capped with paste A (GA) and two with paste B (GB). After 90 days, the teeth were extracted for histological analysis and the degree of dentin bridge formation evaluated. Data was analysed by the Kruskal-Wallis test (P<0.05). The pastes and their components were classified in the following decreasing order of antimicrobial action: calcium hydroxide P.A., paste A, paste B and Copaifera langsdorffii Desfon oil. Calcium hydroxide P.A. showed significantly higher antimicrobial action than the pastes or their vehicles. No significant difference was observed between the two pastes in dentin bridge formation. Based on the microorganisms studied, it can be concluded that the pastes analysed showed similar antimicrobial potential but differed significantly from their individual components. No significant difference was observed in dentin bridge formation between the different pastes tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endodontic therapy consists in the management of several tissues such as pulp tissue, periodontal tissue, periapical bone and dentine. These tissues are often contaminated by blood, periapical exudates and biological fluids. An ideal orthograde or retrograde filling material should be non toxic, noncarcinogenic, nongenotoxic, biocompatible with the host tissues, insoluble in tissue fluids, and dimensionally stable. Calcium-silicate MTA based cements own many of these ideal characteristics, but the long setting time, the non-easy handling and the lack of mechanical properties at early times are few drawbacks which may complicate the clinical application. The aim of this study was to investigate the chemical, physical and biological properties of calcium-silicate MTA cements in order to improve the mechanical properties and the handling keeping the biological characteristics unchanged. Chemical and physical properties such as setting time, solubility, water-uptake, ion release, sealing ability were investigated according the ISO and ADA specifications. The bioactivity (ability to produce apatite nano-sferulities) of MTA cements were evaluated using ESEM/EDX, micro-Raman and ATR/FTIR spettroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of cone beam computed tomography (CBCT), this 3-dimensional diagnostic imaging technique has been established in a growing number of fields in dental medicine. It has become an important tool for both diagnosis and treatment planning, and is also able to support endodontic treatments. However, the higher effective dose of ionizing radiation compared to conventional 2-dimensional radiographs is not justifiable in every case. CBCT allows for a more precise diagnosis of periapical lesions, root fractures as well as external and internal resorptions. Concerning the utility of CBCT in treatment planning decisions, the gain of information through 3-dimensional imaging for any of these pathologies has to be evaluated carefully on an individual basis. Moreover, radioopaque materials such as root canal filling and posts often create artefacts, which may compromise diagnosis. The aim of this review is to summarize the possibilities and limits of CBCT imaging in endodontology as well as introduce guidelines for daily clinical practice. Furthermore, the article presents possible therapeutic advantages of preexisting CBCT scans for root canal treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM To report on an intraradicular visual test in a simulated clinical setting under different optical conditions. METHODOLOGY Miniaturized visual tests with E-optotypes (bar distance from 0.01 to 0.05 mm) were fixed inside the root canal system of an extracted maxillary molar at different locations: at the orifice, a depth of 5 mm and the apex. The tooth was mounted in a phantom head for a simulated clinical setting. Unaided vision was compared with Galilean loupes (2.5× magnification) with integrated light source and an operating microscope (6× magnification). The influence of the dentists' age within two groups was evaluated: <40 years (n = 9) and ≥40 years (n = 15). RESULTS Some younger dentists were able to identify the E-optotypes at the orifice, but otherwise, natural vision did not reveal any measurable result. With Galilean loupes, the younger dentists <40 years could see a 0.05 mm structure at the root canal orifice, in contrast to the older group ≥40 years. Only the microscope allowed the observation of structures inside the root canal, independent of age. CONCLUSION Unaided vision and Galilean loupes with an integrated light source could not provide any measurable vision inside the root canal, but younger dentists <40 years could detect with Galilean loupes a canal orifice corresponding to the tip of the smallest endodontic instruments. Dentists over 40 years of age were dependent on the microscope to inspect the root canal system.