996 resultados para end-Permian extinction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new genus, Meishanorhynchia, is proposed based on new material from the Lower Triassic of the Meishan section, South China. It is of a late Griesbachian age based on both associated biozones (ammonoids and
bivalves) and radiometric dates of the intercalated volcanic ash beds. Comparison with both Palaeozoic and Mesozoic-Cenozoic-related genera suggests that it may represent the first radiation of progenitor brachiopods in the aftermath of the end-Permian extinction. The lowest brachiopod horizon that contains the genus is estimated to be about 250.1±0.3 Ma. This implies that the initial stage of recovery of Brachiopoda in the Early Triassic was probably about 1.3±0.3 myr after the major pulse of the end-Permian mass extinction (dated as 251.4±0.3 Ma). This is in agreement with Hallam's expectancy that biotic recovery typically begins within one million years or so of major mass extinctions, in contrast to current views on the end-Permian extinction event which propose that the recovery of most if not all biotic groups in the Early Triassic was severely delayed and only began about five million years after the end-Permian extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Permian-Triassic extinction pattern in the peri-Gondwanan region is documented biostratigraphically, geochemically and sedimentologically based on three marine sequences deposited in southern Tibet and comparisons with the sections in the Salt Range, Pakistan and Kashmir. Results of biostratigraphical ranges for the marine faunas reveal an end-Permian event comparable in timing with that known at the Meishan section in low palaeolatitude as well as Spitsbergen and East Greenland in northern Boreal settings although biotic patterns earlier in the Permian vary. The previously interpreted delayed extinction (Late Griesbachian) at the Selong Xishan section is not supported by our analysis. The end-Permian event exhibits an abrupt marine faunal shift slightly beneath the Permian-Triassic boundary (PTB) from benthic taxa- to nektic taxa-dominated communities. The climate along the continental margin of Neo-Tethys was cold before the extinction event. However, a rapid climatic warming event as indicated by the southward invasion of abundant warm-water conodonts, warm-water brachiopods, calcareous sponges, and gastropods was associated with the extinction event. Stable isotopic values of δ13Ccarb, δ13Corg and δ18O show a sharp negative drop slightly before and during the extinction interval. Sedimentological and microstratigraphical analysis reveals a Late Permian regression, as marked by a Caliche Bed at the Selong Xishan section and the micaceous siltstone in the topmost part of the Qubuerga Formation at the Qubu and Tulong sections. The regression was immediately followed by a rapid transgression beneath the PTB. The basal Triassic rocks fine upward, and are dominated by dolomitic packstone/wackestone containing pyritic cubes, bioturbation and numerous tiny foraminifers, suggesting that the studied sections were deposited during the initial stage of the transgression and hence may not have been deeply affected by the anoxic event that is widely believed to characterise the zenith of the transgression.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four Ambocoeliidae brachiopod species including one new species (Crurithyris tazawai sp. nov., Crurithyris sp., Paracrurithyris pygmaea and Attenuatella mengi) are described from the Changhsingian (Late Permian) deep-water facies of South China. Analysis of the morphology, palaeoecology and palaeogeographical and temporal distributions of these species revealed that the presence of a delthyrium and/or the micro-ornaments among three of the four species (Crurithyris tazawai sp. nov., Paracrurithyris pygmaea and Attenuatella mengi) favoured an epifaunal (epiphytic) lifestyle. Morphological differences suggest that Paracrurithyris pygmaea may have been more effective metabolically in forming the shell compared with Attenuatella mengi and Crurithyris tazawai. The temporal and palaeogeographical distribution of Attenuatella suggests that A. mengi inhabited cool or cold deep waters. Both Crurithyris tazawai and Attenuatella mengi disappeared earlier in the stratigraphic record than Paracrurithyis pygmaea during the Permian–Triassic mass extinction. These differences in timing of extinction, morphology and palaeogeographical distributions suggest that oxygen deficiency and trophic resource limitation (a consequence of the changing composition of marine phytoplankton in the seas) may have contributed to the end-Permian mass extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biotic recovery following the end-Permian mass extinction was investigated using trace fossil and facies analysis of two Lower–Middle Triassic sections in South China. The Susong section (Lower Yangtze Sedimentary Province) comprises a range of carbonate and mudstone facies that record overall shallowing from offshore to intertidal settings. The Tianshengqiao section (Upper Yangtze Sedimentary Province) consists of mixed carbonate and siliciclastic facies deposited in shallow marine to offshore settings. Griesbachian to Dienerian ichnological records in both sections are characterized by low ichnodiversity, low ichnofabric indices (1–2) and low bedding plane bioturbation indices (1–2). Higher ichnofabric indices (3 and 4), corresponding to a dense population of diminutive ichnotaxon, in the Tianshengqiao section suggest opportunistic infaunal biotic activity during the earliest Triassic. Ichnological data from the Susong section show an increase in ichnodiversity during the late Smithian with 11 ichnogenera identified and increased ichnofabric indices of 4–5 and bedding plane bioturbation indices of 3–5. Although complex traces such as Rhizocorallium are present in Spathian-aged strata in this section, low ichnodiversity and ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao section, ichnofabric indices are moderate to high (3–5) although only six ichnogenera are present and Planolites burrows are consistently small in Smithian and Spathian strata. Complex traces, such as large Rhizocorallium and Thalassinoides, and large Planolites, did not appear until the Anisian. Ichnological results from both sections record the response of organisms to unfavourable environmental conditions although the Susong section shows earlier recovery during the Smithian prior to latest Smithian–Spathian decline. This decline may have resulted from a resurgence of euxinic to anoxic marine environment in various regions of South China. Ichnological data from the Tianshengqiao section indicate protracted recovery throughout the Early Triassic as previously found elsewhere in South China. Comparison of the South China trace fossil records with global ichnological data show a diachronous pattern of recovery of trace makers and highlights the heterogeneous development of oxic facies on the marked variation in recovery rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a consequence of the end-Permian mass extinction, microbes proliferated in the post-extinction shallow marine ecosystems, in which they grew as various microbially induced sedimentary structures (MISSs) in siliciclastic settings. This paper reports, for the first time, the discovery of abundant MISSs from the lowest Triassic sandstones of shallow-water margin origin in the Zhihema sections of the southern Qilianshan region, West China. The sandstones are characterized by well-developed cross-beddings and ripple marks, and a Claraia-dominated bivalve assemblage of middle-late Griesbachian age. These sedimentary structures, together with the bivalves, suggest a high-energy peritidal zone of a shoreface setting in a clastic shallow sea environment. Seven types of MISSs are recognized and described here: pictograph-like sand cracks/crack-fills, polygonal sand crack-fills, erosional remnants, multidirectional linear grooves, sinuous crack-fills, fusiform sand cracks/crack-fills, and leveled ripple marks. Most of the newly found MISSs are morphologically comparable with their ancient and modern counterparts. Detailed optical microscope and scanning electron microscope (SEM) analyses reveal that thin clayey laminae and filamentous mica grains are aligned parallel to bedding plane, and that the matrix-supported quartz grains, overall, are oriented; both of which are interpreted to indicate biogenic origin. The biogenic origin of these MISSs is reinforced by the presence of copious putative nanoglobules and filamentous biofilm-like organic objects in the interspaces of clay minerals in laminated layers. These nanometer-scale objects are interpreted as bacterial bodies or remains that have been replaced with inorganic minerals upon fossilization. The presence of MISSs on the northern margins of Paleo-Tethys indicates that the post-extinction microbial mats had expanded their distributions from low-latitude to moderate-high latitude regions. Moreover, unlike some previously reported microbial mats that contain very rare body and trace fossils, the southern Qilianshan MISSs were found in association with abundant vertical burrows and bivalves, suggesting that the MISS-forming microbial mats may have served as oases for trace-making organisms and opportunistic bivalves to flourish in shallow-marine habitats immediately after the end-Permian mass extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The end of the Palaeozoic is marked by two mass-extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative C-13 anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high-resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn-extinction and post-extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal-beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Late Permian Shaiwa Group of the Ziyun area of Guizhou, South China is a deep-water facies succession characterized by deep-water assemblages of pelagic radiolarians, foraminifers, bivalves, ammonoids and brachiopods. Here we report 20 brachiopod species in 18 genera from the uppermost Shaiwa Group. This brachiopod fauna is latest Changhsingian in age and dominated by productides. The palaeoecologic and taphonomic analysis reveals that the brachiopod fauna is preserved in situ. The attachment modes and substratum preference demonstrate that the Shaiwa brachiopod fauna comprises admixed elements of deep-water and shallow-water assemblages. The presence of the shallow-water brachiopods in the Shaiwa faunas indicates the involuntary settlement of shallow-water brachiopods. The stressed ecologic pressure, triggered by warming surface waters, restricted ecospace and short food sources, may have forced some shallow-water elements to move to hospitable deep-water settings and others to modify their habiting behaviours and exploit new ecospace in deep-water environments. We infer that the end-Permian global warming and subsequent transgression event may have accounted for the stressed environmental pressure in the shallow-water communities prior to the end-Permian mass extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fossil record of land plants is an obvious source of information on the dynamics of mass extinctions in the geological past. In conjunction with the end-Permian ecological crisis, ≈250 million years ago, palynological data from East Greenland reveal some unanticipated patterns. We document the significant time lag between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological crisis resulted in an initial increase in plant diversity, instead of a decrease. Paradoxically, these floral patterns correspond to a “dead zone” in the end-Permian faunal record, characterized by a paucity of marine invertebrate megafossils. The time-delayed, end-Permian plant extinctions resemble modeled “extinction debt” responses of multispecies metapopulations to progressive habitat destruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our studies in southern China have revealed a remarkable sulfur and strontium isotope excursion at the end of the Permian, along with a coincident concentration of impact- metamorphosed grains and kaolinite and a significant decrease in manganese, phosphorous, calcium, and microfossils (foraminifera). These data suggest that an asteroid or a comet hit the ocean at the end of Permian time and caused a rapid and massive release of sulfur from the mantle to the ocean-atmosphere system, leading to significant oxygen consumption, acid rain, and the most severe biotic crisis in the history of life on Earth.