980 resultados para empirical correlation
Resumo:
2000 Mathematics Subject Classification: 62H15, 62H12.
Resumo:
Empirical correlations are usually used as a predictive tool in geotechnical engineering. However, equations calculated for soils very different to the ones to be characterized are frequently used, and so they are not representative of their mechanical properties. This fact, added to the increasing interest of civil engineering in knowing the shear wave velocity (Vs) of the ground, has led to the calculation of different empirical equations to predict the Vs value of the soils of Madrid. In this study this has been achieved by calculating the empirical correlations between the Vs value obtained through the ReMi (Refraction Microtremor) technique and the Standard Penetration Test (500 NSPT values). The empirical correlations proposed are applicable to the whole metropolitan area of Madrid, and have an excellent predictive capability owing to the incorporation of the measurement depth to the equations, which has an important influence in the resistance properties of soils.
Resumo:
The behavior of plane fountains, resulting from the injection of dense fluid (water) upwards into a large container of homogeneous fluid of lower density (air),was investigated. In this study the behavior of fountains was examined numerically and experimentally for different Froude and Reynolds numbers. The flow rate and nozzle diameter of the inlet of the fountain was varied to cover a wide range of Reynolds and Froude numbers. The effect of inclination angle of the inlet for different nozzle diameter and flow rate on fountain behavior was observed. It was found that the height of the fountain greatly depends on Froude number. An empirical correlation was developed for non-dimensional fountain height with Froude number. However the non-dimensional fountain height can more accurately be represented when regressed with both Reynolds and Froude number by the following relationship H/r=exp(5.94)*Re^-0.72*Fr^2.26. The result are compared with previous numerical and experimental results and found to be consistent.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.
Resumo:
Data on pressure drop and heat transfer to aqueous solutions of glycerol flowing in different types of coiled pipes are presented for laminar flow in the range of NRe from 80 to 6000. An empirical correlation is set up which can account the present data as well as the data available in literature within ±10 per cent deviation. Conventional momentum and heat transfer analogy equation is used to analyse the present data.
Resumo:
Herein are reported the results of an investigation on the effective angle of interfacial friction between fine-grained soils and solid surfaces as influenced by the roughness of the material surface, the soil type and the overconsolidation ratio. The ratio of interfacial friction angle to the angle of internal friction (evaluated at constant overconsolidation ratio) of the soil is independent of the overconsolidation ratio. An empirical correlation between this ratio and the roughness of the interface has been proposed.
Resumo:
The Brittle-to-ductile-transition-temperature (BDTT) of free-standing Pt-aluminide (PtAl) coating specimens, i.e. stand-alone coating specimens without any substrate, was determined by micro-tensile testing technique. The effect of Pt content, expressed in terms of the thickness of initial electro-deposited Pt layer, on the BDTT of the coating has been evaluated and an empirical correlation drawn. Increase in the electrodeposited Pt layer thickness from nil to 10 mu m was found to cause an increase in the BDTT of the coating by about 100 degrees C.
Resumo:
The standard free energies of formation of zinc aluminate and chromite were determined by measuring the oxygen potential over a solid CuZn alloy, containing 10 at.−% Zn, in equilibrium with ZnO, ZnAl2O4+Al2O3(χ) and ZnCr2O4+Cr2O3, in the temperature range 700–900°C. The oxygen potential was monitored by means of a solid oxide galvanic cell in which a Y2O3 ThO2 pellet was sandwiched between a CaOZrO2 crucible and tube. The temperature dependence of the free energies of formation of the interoxidic compounds can be represented by the equations, The heat of formation of the spinels calculated from the measurements by the “Second Law method” is found to be in good agreement with calorimetrically determined values. Using an empirical correlation for the entropy of formation of cubic spinel phases from oxides with rock-salt and corundum structures and the measured high temperature cation distribution in ZnAl2O4, the entropy of transformation of ZnO from wurtzite to rock-salt structure is evaluated.
Resumo:
The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.
Resumo:
The atomization characteristics of aviation biofuel discharging from a simplex swirl atomizer into quiescent atmospheric air are studied. The aviation biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% VonSol-53 (aromatics). The experiments are conducted in a spray test facility at varying fuel flow rate conditions. The measured characteristics include atomizer flow number, spray cone angle, breakup length of liquid sheet, wavelength of undulations on liquid sheet, and spray droplet size. The characteristics of biofuel sheet breakup are deduced from the captured images of biofuel spray. The measurements of spray droplet size distribution are obtained using Spraytec. The experimentally measured characteristics of the biofuel sheet breakup are compared with the predictions obtained from the liquid film breakup model proposed by Senecal et al. (1999). The measurements of wavelength and breakup length of the biofuel sheet discharging from the simplex swirl atomizer agree well with the model predictions. The model-predicted droplet size for the biofuel spray is significantly higher than the experimentally measured Sauter mean diameter (SMD). The spray droplets formed from the liquid sheet breakup undergo secondary atomization until 35-45 mm from the atomizer exit and thereafter the SMD increases downstream due to the combined effect of fuel evaporation and droplet coalescence. A good comparison is observed between the experimentally measured SMD of the biofuel spray and the predictions obtained using the empirical correlation reported in literature for sprays discharging from simplex swirl atomizers. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The majority of computational studies of confined explosion hazards apply simple and inaccurate combustion models, requiring ad hoc corrections to obtain realistic flame shapes and often predicting an order of magnitude error in the overpressures. This work describes the application of a laminar flamelet model to a series of two-dimensional test cases. The model is computationally efficient applying an algebraic expression to calculate the flame surface area, an empirical correlation for the laminar flame speed and a novel unstructured, solution adaptive numerical grid system which allows important features of the solution to be resolved close to the flame. Accurate flame shapes are predicted, the correct burning rate is predicted near the walls, and an improvement in the predicted overpressures is obtained. However, in these fully turbulent calculations the overpressures are still too high and the flame arrival times too low, indicating the need for a model for the early laminar burning phase. Due to the computational expense, it is unrealistic to model a laminar flame in the complex geometries involved and therefore a pragmatic approach is employed which constrains the flame to propagate at the laminar flame speed. Transition to turbulent burning occurs at a specified turbulent Reynolds number. With the laminar phase model included, the predicted flame arrival times increase significantly, but are still too low. However, this has no significant effect on the overpressures, which are predicted accurately for a baffled channel test case where rapid transition occurs once the flame reaches the first pair of baffles. In a channel with obstacles on the centreline, transition is more gradual and the accuracy of the predicted overpressures is reduced. However, although the accuracy is still less than desirable in some cases, it is much better than the order of magnitude error previously expected.
Resumo:
The typical MEMS fabrication of micro evaporators ensures the perfect smooth wall surface that is lack of nucleation sites, significantly decreasing the heat transfer coefficients compared with miniature evaporators fabricated using copper or stainless steel. In the present paper, we performed the boiling heat transfer experiment in silicon triangular microchannel heat sink over a wide parameter range for 102 runs. Acetone was used as the working fluid. The measured boiling heat transfer coefficients versus the local vapor mass qualities are compared with the classical Chen’s correlation and other correlations for macro and miniature capillary tubes. It is found that most of these correlations significantly over-predict the measured heat transfer coefficients. New correlations are given. There are many reasons for such deviations. The major reason is coming from the perfect smooth silicon surface that lowers the heat transfer performances. New theory is recommended for the silicon microchannel heat sink that should be different from metallic capillary tubes.
Resumo:
This work involved the treatment of industrial waste water from a nylon carpet printing plant. As dyeing of nylon is particularly difficult, acid dyes, fixing agents, thickeners, finishing agents, are required for successful colouration and cause major problems with the plant's effluent disposal in terms of chemical oxygen demand (COD). Granular activated carbon (GAC) Filtrasorb 400 was used to treat a simulated process plant effluent containing all the pollutants. Equilibrium isotherm experiments were established and experimental data obtained showed good empirical correlation with Langmuir isotherm theory. Column experimental data, in terms of COD were correlated using the bed depth service time (BDST) model. Solid phase loading in the columns were found to approach that in equilibrium studies indicating an efficient use of adsorbent. The results from the BDST model were then used to design a pilot adsorption rig at the plant. The performance of the pilot plant column were accurately predicted by scale-up from the bench scale columns. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259 +/- 0.000008 d, Transit Epoch T-0 = 2 455 342.9688 +/- 0.0002 (HJD), of duration 0.1168 +/- 0.0008 d. A combined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of M-pl = 0.28 +/- 0.03 M-J and a radius of R-pl = 1.27 +/- 0.04 R-J, resulting in a mean density of 0.14 +/- 0.02 rho(J). The stellar parameters are mass M-star = 0.93 +/- 0.03 M-circle dot, radius R-star = 0.895 +/- 0.23 R-circle dot, and age 9(-4)(+3) Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be [Fe/H] = -0.12 +/- 0.1 dex, and we find the planet to have an equilibrium temperature of 1116(-32)(+33) K. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets.