972 resultados para electrospinning CFRP self-healing
Resumo:
I compositi a matrice polimerica rinforzati con fibre di carbonio (Carbon fiber reinforced polymers, CFRP) posseggono proprietà meccaniche uniche rispetto ai materiali convenzionali, ed un peso decisamente inferiore. Queste caratteristiche, negli ultimi decenni, hanno determinato un crescente interesse nei confronti dei CFRP che ha portato a numerose applicazioni in settori come l’industria aerospaziale e l’automotive. Le sollecitazioni cui i CFRP laminati sono soggetti durante la vita d’uso possono causare fenomeni di delaminazione che, portando ad una drastica riduzione delle proprietà meccaniche del materiale, ne compromettono l’integrità strutturale. Nel presente lavoro di tesi, sono state integrate in laminati CFRP membrane elettrofilate da blend polimeriche con capacità di self-healing. Le migliori condizioni da applicare in fase di cura del composito sono state approfonditamente investigate mediante analisi termica (DSC). Per verificare la capacità di autoriparazione dei laminati modificati, è stata valutata la tenacità a frattura interlaminare in Modo I e Modo II prima e dopo il trattamento di attivazione del self-healing.
Resumo:
Composite laminates present important advantages compared to conventional monolithic materials, mainly because for equal stiffness and strength they have a weight up to four times lower. However, due to their ply-by-ply nature, they are susceptible to delamination, whose propagation can bring the structure to a rapid catastrophic failure. In this thesis, in order to increase the service life of composite materials, two different approaches were explored: increase the intrinsic resistance of the material or confer to them the capability of self-repair. The delamination has been hindered through interleaving the composite laminates with polymeric nanofibers, which completed the hierarchical reinforcement scale of the composite. The manufacturing process for the integration of the nanofibrous mat in the laminate was optimized, resulting in an enhancement of mode I fracture toughness up to 250%. The effect of the geometrical dimensions of the nano-reinforcement on the architecture of the micro one (UD and woven laminates) was studied on mode I and II. Moreover, different polymeric materials were employed as nanofibrous reinforcement (Nylon 66 and polyvinylidene fluoride). The nano toughening mechanism was studied by micrograph analysis of the crack path and SEM analysis of the fracture surface. The fatigue behavior to the onset of the delamination and the crack growth rate for woven laminates interleaved with Nylon 66 nanofibers was investigated. Furthermore, the impact behavior of GLARE aluminum-glass epoxy laminates, toughened with Nylon 66 nanofibers was investigated. Finally, the possibility of confer to the composite material the capability of self-repair was explored. An extrinsic self-healing-system, based on core-shell nanofibers filled with a two-component epoxy system, was developed by co-electrospinning technique. The healing potential of the nano vascular system has been proved by microscope electron observation of the healing agent release as result of the vessels rupture and the crosslinking reaction was verified by thermal analysis.
Resumo:
I CFRP laminati sono materiali dalle eccellenti proprietà meccaniche specifiche che hanno, però, il grande svantaggio di essere soggetti a delaminazione. Essa è una problematica che può seriamente comprometterne l’affidabilità in vita d’uso e va, perciò, contrastata cercando di prevenirla o cercando di ridurne gli effetti negativi. Lo scopo del presente elaborato di tesi è stato quello di produrre, mediante elettrofilatura, membrane polimeriche che, integrate in laminati compositi, abbiano funzione di rendere il composito delaminato in grado di “autoripararsi” tramite meccanismo di self-healing. È stato condotto uno studio di ottimizzazione di tutti i parametri riguardanti la soluzione ed il processo di elettrofilatura che conducesse all’ottenimento di membrane con una morfologia fibrosa esente da difetti e, contemporaneamente, ad una buona maneggiabilità delle stesse. Le membrane sono state caratterizzate morfologicamente tramite analisi SEM e analisi DSC.
Resumo:
To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
The complexity of systems is considered an obstacle to the progress of the IT industry. Autonomic computing is presented as the alternative to cope with the growing complexity. It is a holistic approach, in which the systems are able to configure, heal, optimize, and protect by themselves. Web-based applications are an example of systems where the complexity is high. The number of components, their interoperability, and workload variations are factors that may lead to performance failures or unavailability scenarios. The occurrence of these scenarios affects the revenue and reputation of businesses that rely on these types of applications. In this article, we present a self-healing framework for Web-based applications (SHõWA). SHõWA is composed by several modules, which monitor the application, analyze the data to detect and pinpoint anomalies, and execute recovery actions autonomously. The monitoring is done by a small aspect-oriented programming agent. This agent does not require changes to the application source code and includes adaptive and selective algorithms to regulate the level of monitoring. The anomalies are detected and pinpointed by means of statistical correlation. The data analysis detects changes in the server response time and analyzes if those changes are correlated with the workload or are due to a performance anomaly. In the presence of per- formance anomalies, the data analysis pinpoints the anomaly. Upon the pinpointing of anomalies, SHõWA executes a recovery procedure. We also present a study about the detection and localization of anomalies, the accuracy of the data analysis, and the performance impact induced by SHõWA. Two benchmarking applications, exercised through dynamic workloads, and different types of anomaly were considered in the study. The results reveal that (1) the capacity of SHõWA to detect and pinpoint anomalies while the number of end users affected is low; (2) SHõWA was able to detect anomalies without raising any false alarm; and (3) SHõWA does not induce a significant performance overhead (throughput was affected in less than 1%, and the response time delay was no more than 2 milliseconds).
Resumo:
Utilising supramolecular pi-pi stacking interactions to drive miscibility in two-component polymer blends offers a novel approach to producing materials with unique properties. We report in this paper the preparation of a supramolecular polymer network that exploits this principle. A low molecular weight polydiimide which contains multiple pi-electron-poor receptor sites along its backbone forms homogeneous films with a siloxane polymer that features pi-electron-rich pyrenyl end-groups. Compatibility results from a complexation process that involves chain-folding of the polydiimide to create an optimum binding site for the pi-electron-rich chain ends of the polysiloxane. These complementary pi-electron-rich and -poor receptors exhibit rapid and reversible complexation behaviour in solution, and healable characteristics in the solid state in response to temperature. A mechanism is proposed for this thermoreversible healing behaviour that involves disruption of the intermolecular pi-pi stacking cross-links as the temperature of the supramolecular film is increased. The low T-g siloxane component can then flow and as the temperature of the blend is decreased, pi-pi stacking interactions drive formation of a new network and so lead to good damage-recovery characteristics of the two-component blend.
Resumo:
Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.
Resumo:
Web service-based application is an architectural style, where a collection of Web services communicates to each other to execute processes. With the popularity increase of developing Web service-based application and once Web services may change, in terms of functional and non-functional Quality of Service (QoS), we need mechanisms to monitor, diagnose, and repair Web services into a Web Application. This work presents a description of self-healing architecture that deals with these mechanisms. Other contributions of this paper are using the proxy server to measure Web service QoS values and to employ some strategies to recovery the effects from misbehaved Web services. © 2008 IEEE.
Resumo:
Im Rahmen dieser Arbeit wurden neue Ansätze für das Konzept der kapselbasierten Selbstheilungsmaterialien untersucht. Die Verkapselung von Selbstheilungsreagenzien in funktionellen Nanokapseln wurde dabei mittels drei verschiedener Herstellungsmethoden in Miniemulsion durchgeführt. Zunächst wurde die Synthese von Kern-Schale-Partikeln mit verkapselten Monomeren für die Ringöffnungs-Metathese-Polymerisation über freie radikalische Polymerisation in Miniemulsionstropfen beschrieben. Durch orthogonale Reaktionen wurden dabei verschiedene chemische Funktionalisierungen in die Schale eingebracht. Die Rolle des Tensides, das Verhältnis von Kernmaterial zu Monomer sowie die Variation der Lösungsmittelqualität hatte dabei einen Einfluss auf die Struktur der Kolloide. Die Heilungsreagenzien blieben auch nach der Verkapselung aktiv, was durch erfolgreich durchgeführte Selbstheilungsexperimente gezeigt werden konnte. Im zweiten Abschnitt wurde die Synthese von Silica-Nanocontainern für Selbstheilungsmaterialien über Hydrolyse und Polykondensation von Alkoxysilanen an der Grenzfläche der Miniemulsionstropfen beschrieben. Dieser Ansatz ermöglichte die effiziente Verkapselung sowohl von Monomeren als auch von Lösungen der Katalysatoren für die Metathese-Polymerisation in einem Einstufenprozess. Die Größe der Kapseln, die Dicke der Schale und der Feststoffgehalt der Dispersionen konnte dabei in einem weiten Bereich variiert werden. Anhand von erfolgreich durchgeführten Selbstheilungsreaktionen, die über Thermogravimetrie und 13C-NMR-Spektroskopie verfolgt wurden, konnte gezeigt werden, dass die Selbstheilungsreagenzien nach der Verkapselung aktiv blieben. Das dritte Konzept behandelte die Herstellung von polymeren Nanokapseln mittels Emulsions-Lösungsmittelverdampfungstechnik, welche eine milde Methode zur Verkapselung darstellt. Es wurde eine allgemeine und einfache Vorgehensweise beschrieben, in der Selbstheilungsreagenzien in polymeren Nanokapseln unter Verwendung von kommerziell erhältlichen Polymeren als Schalenmaterial verkapselt wurden. Zudem wurden Copolymere aus Styrol und verschiedenen hydrophilen Monomeren über freie radikalische Polymerisation sowie über polymeranaloge Reaktionen hergestellt. Diese statistischen Copolymere waren ebenso wie Blockcopolymere zur Herstellung von wohldefinierten Kern-Schale-Nanopartikeln mittels Emulsions-Lösungsmittelverdampfungsprozess geeignet. rnrnDes Weiteren wurde ein neues Konzept für die Synthese von pH-responsiven Nanokapseln aus tensidfreien Emulsionen unter Verwendung von Copolymeren aus Styrol und Trimethylsilylmethacrylat beschrieben. Der vorgeschlagene synthetische Ansatz ermöglicht dabei die erste Synthese von Nanokapseln über den Emulsions-Lösungsmittelverdampfungsprozess in Abwesenheit eines Tensides. Eine vollständig reversible Aggregation ermöglichte eine leichte Trennung der Nanokapseln von der kontinuierlichen Phase sowie eine Erhöhung der Konzentration der Nanokapseldispersionen auf das bis zu fünffache. Darüber hinaus war es möglich, Selbstheilungsreagenzien in stabilem Zustand zu verkapseln. Abschließend wurde die elektrochemische Abscheidung von mit Monomer gefüllten Nanokapseln in eine Zinkschicht zur Anwendung im Korrosionsschutz behandelt.
Resumo:
The corrosion of metallic materials is a crucial issue on an economical and ecological scale. Corrosion protection becomes then necessarily needed. The main focus of the thesis is to develop stimuli-responsive nanocontainers for self-healing in corrosion protection. A nanocontainer is efficient if distinct payloads can be selectively released via different stimuli because unwanted and unspecific release can be avoided. For anti-corrosion, the wanted nanocontainer is the one able to release its self-healing agents or corrosion inhibitors upon change of pH- or/and redox-potential due to the variation of these two signals at the corroded sites. Conducting polymers such as polyaniline (PANI) were chosen for building the shell of capsules due to their important characteristics of being both pH- and redox responsive.
Resumo:
Supramolecular two-dimensional engineering epitomizes the design of complex molecular architectures through recognition events in multicomponent self-assembly. Despite being the subject of in-depth experimental studies, such articulated phenomena have not been yet elucidated in time and space with atomic precision. Here we use atomistic molecular dynamics to simulate the recognition of complementary hydrogen-bonding modules forming 2D porous networks on graphite. We describe the transition path from the melt to the crystalline hexagonal phase and show that self-assembly proceeds through a series of intermediate states featuring a plethora of polygonal types. Finally, we design a novel bicomponent system possessing kinetically improved self-healing ability in silico, thus demonstrating that a priori engineering of 2D self-assembly is possible.