989 resultados para electronic transition energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resonant Raman behavior of the radial breathing modes are very useful to analyze the electronic property of carbon nanotubes. We investigated the resonant behaviors of Stokes and anti-Stokes radial breathing mode and its overtone of a metallic nanotube, and show how to accurately determine the electronic transition energy of carbon nanotubes from radial breathing modes and their overtones. Based on the present results, the previously reported resonant Raman behavior of the radial breathing modes of SWINT bundles can be interpreted very well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new way to meet the amount of strain relaxation in an InGaN quantum well layer grown on relaxed GaN by calculating and measuring its internal field. With perturbation theory, we also calculate the transition energy of InGaN/GaN SQWs as affected by internal fields. The newly reported experimental data by Graham et al. fit our calculations well on the assumption that the InGaN well layer suffered a 20% strain relaxation, we discuss the differences between our calculated results and the experimental data. Our calculation suggests that with the increase of indium mole fraction in the InGaN/GaN quantum well, the effect of polarization fields on the luminescence of the quantum well will increase. Moreover, our calculation also suggests that an increase in the quantum well width by only one monolayer can result in a large reduction in the transition energy. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most cases the luminescence of Eu~(2+) consists of a d-f broad-band emission, in some particular hosts, however, Eu~(2+) can also give out f-f narrow-line emission. There are two factors of importance here: the first is the strength of the crystal-field

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the energy and lifetime of the ground state hyperfine structure transition in one-electron Bi^82+ . The influence of various distributions of the magnetic moment and the electric charge in the nucleus ^209_83 Bi on energy and lifetime is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al(x)Ga(1-x)As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: 1. We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. 2. We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. 3. Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen’s law. 4. We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300 °C) and high (600 °C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. 5. Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300 °C for 10 – 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the process of electronic excitation energy transfer from a fluorophore to the electronic energy levels of a single-walled carbon nanotube. The matrix element for the energy transfer involves the Coulombic interaction between the transition densities on the donor and the acceptor. In the Foumlrster approach, this is approximated as the interaction between the corresponding transition dipoles. For energy transfer from a dye to a nanotube, one can use the dipole approximation for the dye, but not for the nanotube. We have therefore calculated the rate using an approach that avoids the dipole approximation for the nanotube. We find that for the metallic nanotubes, the rate has an exponential dependence if the energy that is to be transferred, h is less than a threshold and a d(-5) dependence otherwise. The threshold is the minimum energy required for a transition other than the k(i,perpendicular to)=0 and l=0 transition. Our numerical evaluation of the rate of energy transfer from the dye pyrene to a (5,5) carbon nanotube, which is metallic leads to a distance of similar to 165 A degrees up to which energy transfer is appreciable. For the case of transfer to semiconducting carbon nanotubes, apart from the process of transfer to the electronic energy levels within the one electron picture, we also consider the possibility of energy transfer to the lowest possible excitonic state. Transfer to semiconducting carbon nanotubes is possible only if>=epsilon(g)-epsilon(b). The long range behavior of the rate of transfer has been found to have a d(-5) dependence if h >=epsilon(g). But, when the emission energy of the fluorophore is in the range epsilon(g)>h >=epsilon(g)-epsilon(b), the rate has an exponential dependence on the distance. For the case of transfer from pyrene to the semiconducting (6,4) carbon nanotube, energy transfer is found to be appreciable up to a distance of similar to 175 A degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orbital energies and electronic transition energies of BH3·H2S and BH3·CO obtained from ultraviolet (HeI) photoelectron spectroscopy and electron energy loss spectroscopy are discussed in the light of quantum mechanical calculations. BH3·H2O has been characterized, for the first time, by means of the HeI spectrum and the ionization energies assigned to the various orbitals based on calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron energy loss spectra (EELS) of Cr, Mo and W hexacarbonyls in the vapour phase are reported. Most of the bands observed are similar to those in optical spectra, but the two high energy transitions in the 9·8–11·2 eV region are reported here for the first time. Based on the orbital energies from the ultraviolet photoelectron spectra and the electronic transition energies from EELS and earlier optical studies, the molecular energy level schemes of these molecules are constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shape of truncated square-based pyramid quantum dots (QDs) is similar to that of real QDs in experiments. The electronic band structures and optical gain of InAs1-xNx/GaAs QDs are calculated by using the 10-band k.p model, and the strain is calculated by the valence force field (VFF) method. When the top part of the QD is truncated, greater truncation corresponds to a flatter shape of the QD. The truncation changes the strain distribution and the confinement in the z direction. A flatter QD has a greater C1-HH1 transition energy, greater transition matrix element, less detrimental effect of higher excited transition, and higher saturation gain and differential gain. The trade-off between these properties must be considered. From our results, a truncated QD with half of its top part removed has better overall performance. This can provide guidance to growing QDs in experiments in which the proper growing conditions can be controlled to achieve required properties. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eight-band effective-mass Hamiltonian of the free-standing narrow-gap InAs quantum ellipsoids is developed, and the electron and hole electronic structures as well as optical properties are calculated by using the model. The energies, wave functions and transition probabilities of quantum spheres as functions of the radius of quantum sphere R is presented. It is found that the energy levels do not vary as 1/R-2, which is caused by the coupling between the conduction and valence bands, and by the constant terms correspond to the spin-orbit splitting energy. The blueshifts of hole states depend strongly on the coupling from electron states, so that the order of hole states changes as has been predicted in experiment. The exciton binding energies are calculated, the calculated excitonic gaps as functions of the ground exciton transition energy are in good agreement with the photoluminescence measured spectra in details. Finally, the hole energy levels and the linear polarization factors in InAs quantum ellipsoids as functions of the aspect ratio are presented. The state 1S(Z up arrow)((1/2)) becomes the hole ground state when e is larger than 2.4. The saturation value of the linear polarization factors of the InAs long ellipsoids of diameter 2.0 nm is 0.86, in agreement with the experimental results.