1000 resultados para electronic apex locators
Resumo:
Aim To evaluate ex vivo the accuracy of two electronic apex locators during root canal length determination in primary incisor and molar teeth with different stages of physiological root resorption. Methodology One calibrated examiner determined the root canal length in 17 primary incisors and 16 primary molars (total of 57 root canals) with different stages of root resorption based on the actual canal length and using two electronic apex locators. Root canal length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using two electronic apex locators (Root ZX II - J. Morita Corp. and Mini Apex Locator - SybronEndo) according to the manufacturers` instructions. Data were analysed statistically using the intraclass correlation (ICC) test. Results Comparison of the actual root canal length and the electronic root canal length measurements revealed high correlation (ICC = 0.99), regardless of the tooth type (single-rooted and multi-rooted teeth) or the presence/absence of physiological root resorption. Conclusions Root ZX II and Mini Apex Locator proved useful and accurate for apex foramen location during root canal length measurement in primary incisors and molars.
Resumo:
Objective: This ex vivo study evaluated the effect of pre-flaring and file size on the accuracy of the Root ZX and Novapex electronic apex locators (EALs). Material and methods: The actual working length (WL) was set 1 mm short of the apical foramen in the palatal root canals of 24 extracted maxillary molars. The teeth were embedded in an alginate mold, and two examiners performed the electronic measurements using #10, #15, and #20 K-files. The files were inserted into the root canals until the "0.0" or "APEX" signals were observed on the LED or display screens for the Novapex and Root ZX, respectively, retracting to the 1.0 mark. The measurements were repeated after the pre-flaring using the S1 and SX Pro-Taper instruments. Two measurements were performed for each condition and the means were used. Intra-class correlation coefficients (ICCs) were calculated to verify the intra-and inter-examiner agreement. The mean differences between the WL and electronic length values were analyzed by the three-way ANOVA test (p<0.05). Results: ICCs were high (>0.8) and the results demonstrated a similar accuracy for both EALs (p>0.05). Statistically significant accurate measurements were verified in the pre-flared canals, except for the Novapex using a #20 K-file. Conclusions: The tested EALs showed acceptable accuracy, whereas the pre-flaring procedure revealed a more significant effect than the used file size.
Resumo:
The aim of this study was to evaluate in vivo the clinical applicability of two electronic apex locators (EALs) - Apex (Septodont) and iPex (NSK) - in different groups of human teeth by using radiography. The working lengths (WLs) of 100 root canals were determined electronically. The EAL to be used first was chosen randomly and a K-file was inserted into the root canal until the EAL display indicated the location of the apical constriction (0 mm). The K-file was fixed to the tooth and a periapical radiograph was taken using a radiographic film holder. The K-file was removed and the WL was measured. The same procedure was repeated using the other EAL. Radiographs were examined with the aid of a light-box with lens of ×4 magnification by two blinded experienced endodontists. The distance between the file tip and the root apex was recorded as follows: (A) +1 to 0 mm, (B) -0.1 to 0.5 mm, (C) -0.6 to 1 mm, (D) -1.1 to 1.5 mm, and (E) -1.6 mm or greater. For statistical purposes, these scores were divided into 2 subgroups according to the radiographic apex: acceptable (B, C, and D) and non-acceptable (A and E). Statistically significant differences were not found between the results of Apex and iPex in terms of acceptable and non-acceptable measurements (p>0.05) or in terms of the distance recorded from file tip and the radiographic apex (p>0.05). Apex and iPex EALs provided reliable measurements for WL determination for endodontic therapy.
Resumo:
P>Aim To evaluate ex vivo the accuracy of the iPex multi-frequency electronic apex locator (NSK Ltd, Tokyo, Japan) for working length determination in primary molar teeth. Methodology One calibrated examiner determined the working length in 20 primary molar teeth (total of 33 root canals). Working length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the most coronal limit of root resorption, and electronically using the electronic apex locator iPex, according to the manufacturers` instructions. Data were analysed statistically using the intraclass correlation (ICC) test. Results Comparison of the actual and the electronic measurements revealed high correlation (ICC = 0.99) between the methods, regardless of the presence or absence of physiological root resorption. Conclusions In this laboratory study, the iPex accurately identified the apical foramen or the apical opening location for working length measurement in primary molar teeth.
Resumo:
Objective: The aim of this study was to evaluate, ex vivo, the precision of five electronic root canal length measurement devices (ERCLMDs) with different operating systems: the Root ZX, Mini Apex Locator, Propex II, iPex, and RomiApex A-15, and the possible influence of the positioning of the instrument tips short of the apical foramen. Material and Methods: Forty-two mandibular bicuspids had their real canal lengths (RL) previously determined. Electronic measurements were performed 1.0 mm short of the apical foramen (-1.0), followed by measurements at the apical foramen (0.0). The data resulting from the comparison of the ERCLMD measurements and the RL were evaluated by the Wilcoxon and Friedman tests at a significance level of 5%. Results: Considering the measurements performed at 0.0 and -1.0, the precision rates for the ERCLMDs were: 73.5% and 47.1% (Root ZX), 73.5% and 55.9% (Mini Apex Locator), 67.6% and 41.1% (Propex II), 61.7% and 44.1% (iPex), and 79.4% and 44.1% (RomiApex A-15), respectively, considering ±0.5 mm of tolerance. Regarding the mean discrepancies, no differences were observed at 0.0; however, in the measurements at -1.0, the iPex, a multi-frequency ERCLMD, had significantly more discrepant readings short of the apical foramen than the other devices, except for the Propex II, which had intermediate results. When the ERCLMDs measurements at -1.0 were compared with those at 0.0, the Propex II, iPex and RomiApex A-15 presented significantly higher discrepancies in their readings. Conclusions: Under the conditions of the present study, all the ERCLMDs provided acceptable measurements at the 0.0 position. However, at the -1.0 position, the ERCLMDs had a lower precision, with statistically significant differences for the Propex II, iPex, and RomiApex A-15.
Resumo:
The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption.
Resumo:
This study evaluated the influence of tooth embedding media on the accuracy ofan electronic apex locator. The root canal length of 20 human mandibular canines was measured by inserting a 15 K-file into the root canal up to the apical foramen. The distance was measured with a digital caliper. The embedding media evaluated were alginate, saline, floral foam or gauze soaked in saline. Electronic root canal length measurement was performed with Root ZX II. Data were analysed using ANOVA for repeated measurements and Tukey test, at a significance level of 5%. There was no difference between the actual root canal length measurement and the electronic reading recorded with alginate medium. The readings obtained with the other media differed from the actual root canal length measurements. Alginate provided greater accuracy in electronic root canal length determination by Root ZX II than saline, floral foam and gauze.
Resumo:
The aim of this study was to assess, in vivo, the accuracy of the NovApex (R) electronic foramen locator in determining working length (WL) in vital and necrotic posterior teeth. The NovApex (R) was used in 144 canals: 35 teeth with vital pulps (68 canals) and 42 teeth with necrotic pulps (76 canals). WL was measured with the NovApex (R) locator and confirmed using the radiographic method. Differences between electronic and radiographic measurements ranging between 0.0 and 0.4 millimeters were classified as acceptable; differences equal to or greater than 0.5 millimeter were considered unacceptable. Pearson's chi-square test was used to assess the influence of pulp condition on the accuracy of NovApex (R) (alpha = 0.05). Regardless of pulp condition, differences between electronic and radiographic WL measurements were acceptable in 73.61% of the canals. No statistically significant differences in accuracy were observed when comparing vital and necrotic canals (p > 0.05). There were 38 unacceptable measurements. In none of these cases was the file tip located beyond the radiographic apex; in 32, it was located short of the NovApex (R) measurement. Pulp condition had no significant effect on the accuracy of NovApex (R).
Resumo:
The purpose of this study was to evaluate ex vivo the accuracy an electronic apex locator during root canal length determination in primary molars. Methods: One calibrated examiner determined the root canal length in 15 primary molars (total=34 root canals) with different stages of root resorption. Root canal length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using an electronic apex locator (Digital Signal Processing). Data were analyzed statistically using the intraclass correlation (ICC) test. Results: Comparing the actual and electronic root canal length measurements in the primary teeth showed a high correlation (ICC=0.95) Conclusions: The Digital Signal Processing apex locator is useful and accurate for apex foramen location during root canal length measurement in primary molars. (Pediatr Dent 200937:320-2) Received April 75, 2008 vertical bar Lost Revision August 21, 2008 vertical bar Revision Accepted August 22, 2008
Resumo:
Objectives: To compare, in vivo, the accuracy of conventional and digital radiographic methods in determining root canal working length. Material and Methods: Twenty-five maxillary incisor or canine teeth from 22 patients were used in this study. Considering the preoperative radiographs as the baseline, a 25 K file was inserted into the root canal to the point where the Root ZX electronic apex locator indicated the APEX measurement in the screen. From this measurement, 1 mm was subtracted for positioning the file. The radiographic measurements were made using a digital sensor (Digora 1.51) or conventional type-E films, size 2, following the paralleling technique, to determine the distance of the file tip and the radiographic apex. Results: The Student "t" test indicated mean distances of 1.11 mm to conventional and 1.20 mm for the digital method and indicated a significant statistical difference (p<0.05). Conclusions: The conventional radiographic method was found to be superior to the digital one in determining the working length of the root canal.
Resumo:
The determination of root canal length is a significant outcome predictor for endodontic treatments. The aim of this prospective, controlled clinical study was to analyze endodontic working length measurements in preexisting cone-beam computed tomography (CBCT) scans and to compare them with clinical root canal length determination by using an electronic apex locator (EAL).
Resumo:
Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.