999 resultados para electron cooling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new generation electron cooler has started operation in the heavy ion synchrotron CSRm which is used to increase the intensity of heavy ions. Transverse cooling of the ion beam after horizontal multi-turn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. In given accumulation time interval of 10 seconds, 108particles have been accumulated and accelerated to the final energy. The momentum spread after accumulation and acceleration in the 10−4 range has been demonstrated in six species of ion beams. Primary measurements of accumulation process varying with electron energy,electron beam current, electron beam profile, expansion factor and injection interval have been performed.The lifetimes of ion beams in the presence of electron beams were roughly measured with the help of DCCT signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of electron-cooling upgrades the quality of ion beams in the storage rings and brings new problems. The transverse magnetic field distorts the ion orbit while guiding the intense electron beam. The closed-orbit distortion should be and can be localized and controlled well inside the ring acceptance. This paper deals with the field in the e-cool section and concomitant COD of ion orbit and shows the correction scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 400 MeV/u C-12(6+) ion beam was successfully cooled by the intensive electron beam near 1 A in CSRe. The momentum cooling time was estimated near 15 s. The cooling force was measured in the cases of different electron beam profiles, and the different angles between the ion beam and electron beam. The lifetime of the ion beam in CSRe was over 80 h. The dispersion in the cooling section was confirmed as positive close to zero. The beam sizes before cooling and after cooling were measured by the moving screen. The beam diameter after cooling was about 1 mm. The bunch length was measured with the help of the signals from the beam position monitor. The diffusion was studied in the absence of the electron beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron-retarding range of the current-voltage characteristic of a flat Langmuir probe perpendicular to a strong magnetic field in a fully ionized plasma is analysed allowing for anomalous (Bohm) cross-field transport and temperature changes in the collection process. With probe size and ion thermal gyroradius comparable, and smaller than the electron mean free path, there is an outer quasineutral region with ion viscosity determinant in allowing nonambipolar parallel and cross flow. A potential overshoot lying either at the base or inside the quasineutral region both makes ions follow Boltzmann's law at negative bias and extends the electron-retarding range to probe bias e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe heat conduction cools and heats electrons at and radially away from the probe axis, respectively. The potential overshoot with no thermal effects would reduce the electron current Ie, making the In Ie versus 4>p graph downwards-concave,but cooling further reduces Ie substantially, and may tilt the slope upwards past the temperature minimum. The domain of strict validity of our analysis is narrow in case of low ion mass (deuterium), breaking down with the ion Boltzmann law.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on several facts of CSRrn, such as the layout of the ring, the lattice parameters, exiting Schottky noise diagnosis equipment and fund, the primary stochastic cooling design of CSRm has been carried out. The optimum cooling time and the optimum cooling bandwidth axe obtained through simulation using the cooling function. The results indicate that the stochastic cooling is quite a powerful cooling method for CSRm. The comparison of the cooling effects of stochastic cooling and electron cooling in CSR are also presented. We can conclude that the combination of the two cooling methods on CSRrn will improve the beam cooling rate and quality beam greatly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electron beam longitudinal temperature is an important parameter on electron cooling devise. In this paper, electron beam longitudinal temperature on the HIRFL-CSR electron cooling devise is deduced from four important factors-flattened distribution, electrostatic accelerate, space charge effect and beam scattering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Collisional analysis of electron collection by a probe in a strongly magnetized, fully ionized plasma is carried out. A solution to the complete set of macroscopic equations with classical transport coefficients that is wholly consistent in the domain is determined; R and le are probe radius and electron gyroradius, respectively. If R2/le 2 is large compared with mi/3me probe large compared with ion gyroradius, ion–electron energy exchange—rather than electron heat diffusion—keeps electrons isothermal. For smaller probes at negative bias, however, electron cooling occurs in the plasma beyond the sheath, with a potential overshoot lying well away from it. The probe characteristic in the electron-retarding range may then mimic the characteristic for a two electron-temperature plasma and lead to an overestimate of electron temperature; the validity of these results for other transport models is discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIRFL-CSR, a new heavy ion cooler-storage-ring system at IMP, had been in commissioning since the beginning of 2006. In the two years of 2006 and 2007 the CSR commissioning was finished, including the stripping injection (STI), electron-cooling with hollow electron beam, C-beam stacking with the combination of STI and e-cooling, the wide energy-range synchrotron ramping from 7 MeV/u to 1000 MeV/u by changing the RF harmonic-number at mid-energy, the multiple multi-turn injection (MMI), the beam accumulation with MMI and e-cooling for heavy-ion beams of Ar, Kr and Xe, the fast extraction from CSRm and single-turn injection to CSRe, beam stacking in CSRe and the RIBs mass-spectrometer test with the isochronous mode in CSRe by using the time-of-flight method.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small-angle multiple intrabeam scattering (IBS) is an important effect for heavy-ion storage rings with electron cooling, because the cooling time is determined by the equilibrium between cooling and IBS process. All usually used numerical algorithms of IBS growth rate calculations are based on the model of the collisions proposed by A.Piwinski, but this result is a multidimensional integral. In this paper, the IBS growth rates are simulated for HIRFL-CSR using symmetric elliptic integral method, and compared with several available IBS code results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CSR, a new accelerator project under the construction. to upgrade the existing heavy ion cyclotron system in Lanzhou, is a double cooling-storage-ring system. It consists of a main ring and an experimental ring. The heavy ion beams from the cyclotron system will be accumulated and accelerated first in the main ring, then extracted to produce radioactive ion beams or high-Z beams, and finally to be send to the second ring for internal-target experiments.