904 resultados para electromechanical response mechanisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Oceania region is an area particularly prone to natural disasters such as cyclones, tsunamis, floods, droughts, earthquakes and volcanic eruptions. Many of the nations in the region are Small Island Developing States (SIDS), yet even within wealthy states such as Australia and New Zealand there are groups which are vulnerable to disaster. Vulnerability to natural disaster can be understood in human rights terms, as natural disasters threaten the enjoyment of a number of rights which are guaranteed under international law, including rights to health, housing, food, water and even the right to life itself. The impacts of climate change threaten to exacerbate these vulnerabilities, yet, despite the foreseeability of further natural disasters as a result of climate change, there currently exists no comprehensive international framework for disaster response offering practical and/or legally reliable mechanisms to assist at‐risk states and communities. This paper sets out to explore the human rights issues presented by natural disasters and examine the extent to which these issues can be addressed by disaster response frameworks at the international, regional and national levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectricity in ZnO is an unlikely physical phenomenon. Here, we show ferroelectricity in undoped 001] ZnO nanorods due to zinc vacancies. Generation of ferroelectricity in a ZnO nanorod effectively increases its piezoelectricity and turns the ZnO nanorod into an ultrahigh-piezoelectric material. Here using piezoelectric force microscopy (PFM), it is observed that increasing the frequency of the AC excitation electric field decreases the effective d(33). Subsequently, the existence of a reversible permanent electric dipole is also found from the P-E hysteresis loop of the ZnO nanorods. Under a high resolution transmission electron microscope (HRTEM), we observe a zinc blende stacking in the wurtzite stacking of a single nanorod along the growth axis. The zinc blende nature of this defect is also supported by the X-ray diffraction (XRD) and Raman spectra. The presence of zinc vacancies in this basal stacking fault modulates p-d hybridization of the ZnO nanorod and produces a magnetic moment through the adjacent oxygen ions. This in turn induces a reversible electric dipole in the non-centrosymmetric nanostructure and is responsible for the ultrahigh-piezoelectric response in these undoped ZnO nanorods. We reveal that this defect engineered ZnO can be considered to be in the competitive class of ultrahigh-piezoelectric nanomaterials for energy harvesting and electromechanical device fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Static domain structures and polarization dynamics of silicon doped HfO2 are explored. The evolution of ferroelectricity as a function of Si-doping level driving the transition from paraelectricity via ferroelectricity to antiferroelectricity is investigated. Ferroelectric and antiferroelectric properties can be observed locally on the pristine, poled and electroded surfaces, providing conclusive evidence to intrinsic ferroic behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The response of buildings to tunnelling induced ground movements is an area of great importance for many urban tunnelling projects. This paper presents the response of two buildings to the construction of a 12 m diameter sprayed concrete lining (SCL) tunnel with face reinforcement, in Italy. Soil and structure displacements were monitored through extensive instrumentation. The settlement response of the two buildings was found to differ significantly, demonstrating both flexible and rigid response mechanisms. Comparison of the building settlement profiles with greenfield settlements enables the soil structure interaction to be quantified. Encouraging agreement between the modification to the greenfield settlement profile displayed by buildings and estimates made from existing predictive tools is observed. Potential issues for infrastructure connected to buildings, arising from the embedment of rigid buildings into the soil, are also highlighted. © 2012 Taylor & Francis Group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Demonstration of a tunable conductivity of the LaAlO3/SrTiO3 interfaces drew significant attention to the development of oxide electronic structures where electronic confinement can be reduced to the nanometer range. While the mechanisms for the conductivity modulation are quite different and include metal insulator phase transition and surface charge writing, generally it is implied that this effect is a result of electrical modification of the LaAlO3 surface (either due to electrochemical dissociation of surface adsorbates or free charge deposition) leading to the change in the two-dimensional electron. gas (2DEG) density at the LaAlO3/SrTiO3 (LAO/STO) interface. In this paper, using piezoresponse force microscopy we demonstrate a switchable electromechanical response of the LAO overlayer, which we attribute to the motion of oxygen vacancies through the LAO layer thickness. These electrically induced reversible changes in bulk stoichiometry of the LAO layer are a signature of a possible additional mechanism for nanoscale oxide 2DEG control on LAO/STO interfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Important food crops like rice are constantly exposed to various stresses that can have devastating effect on their survival and productivity. Being sessile, these highly evolved organisms have developed elaborate molecular machineries to sense a mixture of stress signals and elicit a precise response to minimize the damage. However, recent discoveries revealed that the interplay of these stress regulatory and signaling molecules is highly complex and remains largely unknown. In this work, we conducted large scale analysis of differential gene expression using advanced computational methods to dissect regulation of stress response which is at the heart of all molecular changes leading to the observed phenotypic susceptibility. One of the most important stress conditions in terms of loss of productivity is drought. We performed genomic and proteomic analysis of epigenetic and miRNA mechanisms in regulation of drought responsive genes in rice and found subsets of genes with striking properties. Overexpressed genesets included higher number of epigenetic marks, miRNA targets and transcription factors which regulate drought tolerance. On the other hand, underexpressed genesets were poor in above features but were rich in number of metabolic genes with multiple co-expression partners contributing majorly towards drought resistance. Identification and characterization of the patterns exhibited by differentially expressed genes hold key to uncover the synergistic and antagonistic components of the cross talk between stress response mechanisms. We performed meta-analysis on drought and bacterial stresses in rice and Arabidopsis, and identified hundreds of shared genes. We found high level of conservation of gene expression between these stresses. Weighted co-expression network analysis detected two tight clusters of genes made up of master transcription factors and signaling genes showing strikingly opposite expression status. To comprehensively identify the shared stress responsive genes between multiple abiotic and biotic stresses in rice, we performed meta-analyses of microarray studies from seven different abiotic and six biotic stresses separately and found more than thirteen hundred shared stress responsive genes. Various machine learning techniques utilizing these genes classified the stresses into two major classes' namely abiotic and biotic stresses and multiple classes of individual stresses with high accuracy and identified the top genes showing distinct patterns of expression. Functional enrichment and co-expression network analysis revealed the different roles of plant hormones, transcription factors in conserved and non-conserved genesets in regulation of stress response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Oesophageal adenocarcinomas often show resistances to chemotherapy (CTX), therefore, it would be of high interest to better understand the mechanisms of resistance. We examined the expression of heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) in pretherapeutic biopsies of oesophageal adenocarcinomas to assess their potential role in CTX response. METHODS Ninety biopsies of locally advanced adenocarcinomas before platin/5-fluorouracil (FU)-based CTX were investigated by reverse phase protein arrays (RPPAs), immunohistochemistry (IHC) and quantitative RT-PCR. RESULTS CTX response strongly correlated with survival (P=0.001). Two groups of tumours with specific protein expression patterns were identified by RPPA: Group A was characterised by low expression of HSP90, HSP27 and p-HSP27((Ser15, Ser78, Ser82)) and high expression of GRP78, GRP94, HSP70 and HSP60; Group B exhibited the inverse pattern. Tumours of Group A were more likely to respond to CTX, resulting in histopathological tumour regression (P=0.041) and post-therapeutic down-categorisation from cT3 to ypT0-T2 (P=0.040). High HSP60 protein (IHC) and mRNA expression were also associated with tumour down-categorisation (P=0.016 and P=0.004). CONCLUSION Our findings may enhance the understanding of CTX response mechanisms, might be helpful to predict CTX response and might have translational relevance as they highlight the role of potentially targetable cellular stress proteins in the context of CTX response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil salinity affects rhizobia both as free-living bacteria and in symbiosis with the host. The aim of this study was to examine the transcriptional response of the Lotus microsymbiont Mesorhizobium loti MAFF303099 to salt shock. Changes in the transcriptome of bacterial cells subjected to a salt shock of 10% NaCl for 30 min were analyzed. From a total of 7231 protein-coding genes, 385 were found to be differentially expressed upon salt shock, among which 272 were overexpressed. Although a large number of overexpressed genes encode hypothetical proteins, the two most frequently represented COG categories are "defense mechanisms" and "nucleotide transport and metabolism". A significant number of transcriptional regulators and ABC transporters genes were upregulated. Chemotaxis and motility genes were not differentially expressed. Moreover, most genes previously reported to be involved in salt tolerance were not differentially expressed. The transcriptional response to salt shock of a rhizobium with low ability to grow under salinity conditions, but enduring a salinity shock, may enlighten us concerning salinity stress response mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have systematically analysed the ultra structure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFPfusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lactobacillus rhamnosus GG is a probiotic bacterium that is known worldwide. Since its discovery in 1985, the health effects and biology of this health-promoting strain have been researched at an increasing rate. However, knowledge of the molecular biology responsible for these health effects is limited, even though research in this area has continued to grow since the publication of the whole genome sequence of L. rhamnosus GG in 2009. In this thesis, the molecular biology of L. rhamnosus GG was explored by mapping the changes in protein levels in response to diverse stress factors and environmental conditions. The proteomics data were supplemented with transcriptome level mapping of gene expression. The harsh conditions of the gastro-intestinal tract, which involve acidic conditions and detergent-like bile acids, are a notable challenge to the survival of probiotic bacteria. To simulate these conditions, L. rhamnosus GG was exposed to a sudden bile stress, and several stress response mechanisms were revealed, among others various changes in the cell envelope properties. L. rhamnosus GG also responded in various ways to mild acid stress, which probiotic bacteria may face in dairy fermentations and product formulations. The acid stress response of L. rhamnosus GG included changes in central metabolism and specific responses related to the control of intracellular pH. Altogether, L. rhamnosus GG was shown to possess a large repertoire of mechanisms for responding to stress conditions, which is a beneficial character of a probiotic organism. Adaptation to different growth conditions was studied by comparing the proteome level responses of L. rhamnosus GG to divergent growth media and to different phases of growth. Comparing different growth phases revealed that the metabolism of L. rhamnosus GG is modified markedly during shift from the exponential to the stationary phase of growth. These changes were seen both at proteome and transcriptome levels and in various different cellular functions. When the growth of L. rhamnosus GG in a rich laboratory medium and in an industrial whey-based medium was compared, various differences in metabolism and in factors affecting the cell surface properties could be seen. These results led us to recommend that the industrial-type media should be used in laboratory studies of L. rhamnosus GG and other probiotic bacteria to achieve a similar physiological state for the bacteria as that found in industrial products, which would thus yield more relevant information about the bacteria. In addition, an interesting phenomenon of protein phosphorylation was observed in L. rhamnosus GG. Phosphorylation of several proteins of L. rhamnosus GG was detected, and there were hints that the degree of phosphorylation may be dependent on the growth pH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Hypothesis: Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Methods: Six healthy volunteers were subjected to heat stress at 55degreesC in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Conclusions: Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u (i) , electric displacement D (i) and volume fraction rho (I) of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction rho (I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to analyse the possibilities of improving grid stability on island systems by local demand response mechanisms,a multi-agent simulation model is presented. To support the primary reserve, an under-frequency load shedding (UFLS)using refrigerator loads is modelled. The model represents the system at multiple scales, by recreating each refrigerator individually, and coupling the whole population of refrigerators to a model which simulates the frequency response of the energy system, allowing for cross-scale interactions. Using a simple UFLS strategy, emergent phenomena appear in the simulation. Synchronisation e ects among the individual loads were discovered, which can have strong, undesirable impacts on the system such as oscillations of loads and frequency. The phase transition from a stable to an oscillating system is discussed.