370 resultados para electrolytic
Resumo:
The system 3-methylpyridine(3MP)+water(H2O)+NaBr has been the subject of an intense scientific debate since the work of Jacob [Phys. Rev. E. 58, 2188 (1988)] and Anisimov [Phys. Rev. Lett. 85, 2336 (2000)]. The crossover critical behavior of this system seemed to show remarkable sensitivity to the weight fraction (X) of the ionic impurity NaBr. In the range X <= 0.10 the system displayed Ising behavior and a pronounced crossover to mean-field behavior in the range 0.10 <= X <= 0.16. A complete mean-field behavior was observed at X=0.17, a result that was later attributed to the existence of long-living nonequilibrium states in this system [Kostko , Phys. Rev. E. 70, 026118 (2004)]. In this paper, we report the near-critical behavior of osmotic susceptibility in the isotopically related ternary system, 3MP+heavy water(D2O)+NaBr. Detailed light-scattering experiments performed at exactly the same NaBr concentrations as investigated by Jacob reveal that the system 3MP+D2O+NaBr shows a simple Ising-type critical behavior with gamma similar or equal to 1.24 and nu similar or equal to 0.63 over the entire NaBr concentration range 0 <= X <= 0.1900. The crossover behavior is predominantly nonmonotonic and is completed well outside the critical domain. An analysis in terms of the effective susceptibility exponent (gamma(eff)) reveals that the crossover behavior is nonmonotonic for 0 <= X <= 0.1793 and tends to become monotonic for X > 0.1793. The correlation length amplitude xi(o), has a value of similar or equal to 2 A for 0.0250 <= X <= 0.1900, whereas for X=0, xi(o)similar or equal to 3.179 A. Since isotopic H -> D substitution is not expected to change the critical behavior of the system, our results support the recent results obtained by Kostko [Phys. Rev. E. 70, 026118 (2004)] that 3MP+H2O+NaBr exhibits universal Ising-type critical behavior typical for other aqueous solutions.
Resumo:
Wear resistant coatings were produced on a permanent mould cast MRI 230D Mg alloy by (a) PEO in silicate based electrolyte, (b) PEO in phosphate based electrolyte, (c) hybrid coatings of silicate PEO followed by laser surface alloying (LSA) with Al and Al(2)O(3), and (d) hybrid coatings of phosphate PEO followed by LSA with Al and Al(2)O(3). Microstructural characterization of the coatings was carried out by scanning electron microscopy (SEM) and X(ray diffraction. The tribological behavior of the coatings was investigated under dry sliding condition using linearly reciprocating ball-on-flat wear test. Both the PEO coatings exhibited a friction coefficient of about 0.8 and hybrid coatings exhibited a value of about 0.5 against the AISI 52100 steel ball as the friction partner, which were slightly reduced with the increase in applied load. The PEO coatings sustained the test without failure at 2 N load but failed at 5 N load due to micro-fracture caused by high contact stresses. The hybrid coatings did not get completely worn off at 2 N load but were completely removed exposing the substrate at 5 N load. The PEO coatings exhibited better wear resistance than the hybrid coatings and silicate PEO coatings exhibited better wear resistance than the phosphate PEO coatings. Both the PEO coatings melted/decomposed on laser irradiation and all the hybrid coatings exhibited similar microstructure and wear behavior irrespective of the nature of the primary PEO coating or laser energies. SEM examination of worn surfaces indicated abrasive wear combined with adhesive wear for all the specimens. The surface of the ball exhibited a discontinuous transfer layer after the wear test. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolfic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and shred ceramic particles corresponds to a I-Vproperty with two critical voltages. The growth regularity of PEO cermet coatings was also studied.
Resumo:
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.
Resumo:
Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of gamma-Al2O3, mullite, and alpha-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
The adhesion of bovine chondrocytes and human osteoblasts to three titania-based coatings, formed by plasma electrolytic oxidation (PEO), was compared to that on uncoated Ti-6Al-4V substrates, and some comparisons were also made with plasma sprayed hydroxyapatite (HA) coatings. This was done using a centrifuge, with accelerations of up to 160,000 g, so as to induce buoyancy forces that created normal or shear stresses at the interface. It is shown that, on all surfaces, it was easier to remove cells under normal loading than under shear loading. Cell adhesion to the PEO coatings was stronger than that on Ti-6Al-4V and similar to that on HA. Cell proliferation rates were relatively high on one of the PEO coatings, which was virtually free of aluminium, but low on the other two, which contained significant levels of aluminium. It is concluded that the Al-free PEO coating offers promise for application to prosthetic implants.
Resumo:
The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.
Resumo:
Aluminum solid electrolytic capacitors with polyaniline doped with inorganic and organic acids as counterelectrode were fabricated, their properties were studied.
Resumo:
A simulation of the motion of molten aluminium inside an electrolytic cell is presented. Since the driving term of the aluminium motion is the Lorentz (j × B) body force acting within the fluid,this problem involves the solution of the magneto-hydro-dynamic equations. Different solver modules for the magnetic field computation and for the fluid motion simulation are coupled together. The interactions of all these are presented and discussed.
Resumo:
Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.