877 resultados para electricity price markets
Resumo:
Energy prices are highly volatile and often feature unexpected spikes. It is the aim of this paper to examine whether the occurrence of these extreme price events displays any regularities that can be captured using an econometric model. Here we treat these price events as point processes and apply Hawkes and Poisson autoregressive models to model the dynamics in the intensity of this process.We use load and meteorological information to model the time variation in the intensity of the process. The models are applied to data from the Australian wholesale electricity market, and a forecasting exercise illustrates both the usefulness of these models and their limitations when attempting to forecast the occurrence of extreme price events.
Resumo:
Abnormally high price spikes in spot electricity markets represent a significant risk to market participants. As such, a literature has developed that focuses on forecasting the probability of such spike events, moving beyond simply forecasting the level of price. Many univariate time series models have been proposed to dealwith spikes within an individual market region. This paper is the first to develop a multivariate self-exciting point process model for dealing with price spikes across connected regions in the Australian National Electricity Market. The importance of the physical infrastructure connecting the regions on the transmission of spikes is examined. It is found that spikes are transmitted between the regions, and the size of spikes is influenced by the available transmission capacity. It is also found that improved risk estimates are obtained when inter-regional linkages are taken into account.
Resumo:
This study of the wholesale electricity market compares the cost-minimizing performance of the auction mechanism currently in place in U.S. markets with the performance of a proposed replacement. The current mechanism chooses an allocation of contracts that minimizes a fictional cost calculated using pay-as-offer pricing. Then suppliers are paid the market clearing price. The proposed mechanism uses the market clearing price in the allocation phase as well as in the payment phase. In concentrated markets, the proposed mechanism outperforms the current mechanism even when strategic behavior by suppliers is taken into account. The advantage of the proposed mechanism increases with increased price competition.
Resumo:
Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.
Resumo:
A tanulmány arra keresi a választ, hogy a megújuló alapú áramtermelők támogatása csökkentőleg hathat- e a villamos energia nagykereskedelmi és kiskereskedelmi árára. Ez utóbbi tartalmazza a megújulók támogatásának összegét is. Számos elméleti cikk rámutatott arra, hogy nemcsak a nagykereskedelmi árak, hanem a kiskereskedelmi villamosenergia-árak is csökkenhetnek a drágább, megújuló alapú áramtermelők támogatása révén. A tanulmány során egy villamosenergia-piacokat szimuláló modell segítségével modellezi a szerző, hogy a különböző mennyiségű szélerőművi és fotovoltaikus kapacitás támogatása hogyan hat a magyarországi nagykereskedelmi és kiskereskedelmi árakra. _____ Impact of the Hungarian renewable based power generation on electricity price The aim of this paper is to answer the question whether the support of renewable power generation could decrease the wholesale and retail electricity prices. The latter one includes the support of renewables. Several studies point out that not only the wholesale, but the retail electricity prices could decrease when supporting the more expensive, renewable power generation. A model, which simulates the electricity markets, is used in order to analyse the impact of different level of wind and photo voltaic power generator support fee on Hungarian wholesale and retail electricity prices.
Resumo:
The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.
Resumo:
This paper models the mean and volatility spillovers of prices within the integrated Iberian and the interconnected Spanish and French electricity markets. Using the constant (CCC) and dynamic conditional correlation (DCC) bivariate models with three different specifications of the univariate variance processes, we study the extent to which increasing interconnection and harmonization in regulation have favoured price convergence. The data consist of daily prices calculated as the arithmetic mean of the hourly prices over a span from July 1st 2007 until February 29th 2012. The DCC model in which the variances of the univariate processes are specified with a VARMA(1,1) fits the data best for the integrated MIBEL whereas a CCC model with a GARCH(1,1) specification for the univariate variance processes is selected to model the price series in Spain and France. Results show that there are significant mean and volatility spillovers in the MIBEL, indicating strong interdependence between the two markets, while there is a weaker evidence of integration between the Spanish and French markets. We provide new evidence that the EU target of achieving a single electricity market largely depends on increasing trade between countries and homogeneous rules of market functioning.
Resumo:
The European Union Emissions Trading Scheme (EU ETS) is a cornerstone of the European Union's policy to combat climate change and its key tool for reducing industrial greenhouse gas emissions cost-effectively. The purpose of the present work is to evaluate the influence of CO2 opportunity cost on the Spanish wholesale electricity price. Our sample includes all Phase II of the EU ETS and the first year of Phase III implementation, from January 2008 to December 2013. A vector error correction model (VECM) is applied to estimate not only long-run equilibrium relations, but also short-run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The four commodities prices are modeled as joint endogenous variables with air temperature and renewable energy as exogenous variables. We found a long-run relationship (cointegration) between electricity price, carbon price, and fuel prices. By estimating the dynamic pass-through of carbon price into electricity price for different periods of our sample, it is possible to observe the weakening of the link between carbon and electricity prices as a result from the collapse on CO2 prices, therefore compromising the efficacy of the system to reach proposed environmental goals. This conclusion is in line with the need to shape new policies within the framework of the EU ETS that prevent excessive low prices for carbon over extended periods of time.
Resumo:
The existence of undesirable electricity price spikes in a competitive electricity market requires an efficient auction mechanism. However, many of the existing auction mechanism have difficulties in suppressing such unreasonable price spikes effectively. A new auction mechanism is proposed to suppress effectively unreasonable price spikes in a competitive electricity market. It optimally combines system marginal price auction and pay as bid auction mechanisms. A threshold value is determined to activate the switching between the marginal price auction and the proposed composite auction. Basically when the system marginal price is higher than the threshold value, the composite auction for high price electricity market is activated. The winning electricity sellers will sell their electricity at the system marginal price or their own bid prices, depending on their rights of being paid at the system marginal price and their offers' impact on suppressing undesirable price spikes. Such economic stimuli discourage sellers from practising economic and physical withholdings. Multiple price caps are proposed to regulate strong market power. We also compare other auction mechanisms to highlight the characteristics of the proposed one. Numerical simulation using the proposed auction mechanism is given to illustrate the procedure of this new auction mechanism.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.
Resumo:
An extensive electricity transmission network facilitates electricity trading between Finland, Sweden, Norway and Denmark. Currently most of the area's power generation is traded at NordPool, where the trading volumes have steadily increased since the early 1990's, when the exchange was founded. The Nordic electricity is expected to follow the current trend and further integrate with the other European electricity markets. Hydro power is the source for roughly a half of the supply in the Nordic electricity market and most of the hydro is generated in Norway. The dominating role of hydro power distinguishes the Nordic electricity market from most of the other market places. Production of hydro power varies mainly due to hydro reservoirs and demand for electricity. Hydro reservoirs are affected by water inflows that differ each year. The hydro reservoirs explain remarkably the behaviour of the Nordic electricity markets. Therefore among others, Kauppi and Liski (2008) have developed a model that analyzes the behaviour of the markets using hydro reservoirs as explanatory factors. Their model includes, for example, welfare loss due to socially suboptimal hydro reservoir usage, socially optimal electricity price, hydro reservoir storage and thermal reservoir storage; that are referred as outcomes. However, the model does not explain the real market condition but rather an ideal situation. In the model the market is controlled by one agent, i.e. one agent controls all the power generation reserves; it is referred to as a socially optimal strategy. Article by Kauppi and Liski (2008) includes an assumption where an individual agent has a certain fraction of market power, e.g. 20 % or 30 %. In order to maintain the focus of this thesis, this part of their paper is omitted. The goal of this thesis is two-fold. Firstly we expand the results from the socially optimal strategy for years 2006-08, as the earlier study finishes in 2005. The second objective is to improve on the methods from the previous study. This thesis results several outcomes (SPOT-price and welfare loss, etc.) due to socially optimal actions. Welfare loss is interesting as it describes the inefficiency of the market. SPOT-price is an important output for the market participants as it often has an effect on end users' electricity bills. Another function is to modify and try to improve the model by means of using more accurate input data, e.g. by considering pollution trade rights effect on input data. After modifications to the model, new welfare losses are calculated and compared with the same results before the modifications. The hydro reservoir has the higher explanatory significance in the model followed by thermal power. In Nordic markets, thermal power reserves are mostly nuclear power and other thermal sources (coal, natural gas, oil, peat). It can be argued that hydro and thermal reservoirs determine electricity supply. Roughly speaking, the model takes into account electricity demand and supply, and several parameters related to them (water inflow, oil price, etc.), yielding finally the socially optimal outcomes. The author of this thesis is not aware of any similar model being tested before. There have been some other studies that are close to the Kauppi and Liski (2008) model, but those have a somewhat different focus. For example, a specific feature in the model is the focus on long-run capacity usage that differs from the previous studies on short-run market power. The closest study to the model is from California's wholesale electricity markets that, however, uses different methodology. Work is constructed as follows.
Resumo:
This study compares the procurement cost-minimizing and productive efficiency performance of the auction mechanism used by independent system operators (ISOs) in wholesale electricity auction markets in the U.S. with that of a proposed alternative. The current practice allocates energy contracts as if the auction featured a discriminatory final payment method when, in fact, the markets are uniform price auctions. The proposed alternative explicitly accounts for the market clearing price during the allocation phase. We find that the proposed alternative largely outperforms the current practice on the basis of procurement costs in the context of simple auction markets featuring both day-ahead and real-time auctions and that the procurement cost advantage of the alternative is complete when we simulate the effects of increased competition. We also find that a trade-off between the objectives of procurement cost minimization and productive efficiency emerges in our simple auction markets and persists in the face of increased competition.
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Resumo:
This paper examines whether increases to published wholesale prices justify the retail electricity price increases imposed on residential consumers in January 2008. The study is based on analysis of two questions: Is the reported wholesale price a reliable indicator of the cost electricity retailers are paying to buy power; and is the corporate structure of the British electricity sector competitive? [Taken from first paragraph of summary]
Resumo:
This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.