982 resultados para electricity consumption
Resumo:
Lighting and small power will typically account for more than half of the total electricity consumption in an office building. Significant variations in electricity used by different tenants suggest that occupants can have a significant impact on the electricity demand for these end-uses. Yet current modelling techniques fail to represent the interaction between occupant and the building environment in a realistic manner. Understanding the impact of such behaviours is crucial to improve the methodology behind current energy modelling techniques, aiming to minimise the significant gap between predicted and in-use performance of buildings. A better understanding of the impact of occupant behaviour on electricity consumption can also inform appropriate energy saving strategies focused on behavioural change. This paper reports on a study aiming to assess the intent of occupants to switch off lighting and appliances when not in use in office buildings. Based on the Theory of Planned Behaviour, the assessment takes the form of a questionnaire and investigates three predictors to behaviour individually: 1) behavioural attitude; 2) subjective norms; 3) perceived behavioural control. The paper details the development of the assessment procedure and discusses preliminary findings from the study. The questionnaire results are compared against electricity consumption data for individual zones within a multi-tenanted office building. Initial results demonstrate a statistically significant correlation between perceived behavioural control and energy consumption for lighting and small power
Resumo:
The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.
Resumo:
Nowadays the electricity consumption in the residential sector attracts policy and research efforts, in order to propose saving strategies and to attain a better balance between production and consumption, by integrating renewable energy production and proposing suitable demand side management methods. To achieve these objectives it is essential to have real information about household electricity demand profiles in dwellings, highly correlated, among other aspects, with the active occupancy of the homes and to the personal activities carried out in homes by their occupants. Due to the limited information related to these aspects, in this paper, behavioral factors of the Spanish household residents, related to the electricity consumption, have been determined and analyzed, based on data from the Spanish Time Use Surveys, differentiating among the Autonomous Communities and the size of municipalities, or the type of days, weekdays or weekends. Activities involving a larger number of houses are those related to Personal Care, Food Preparation and Washing Dishes. The activity of greater realization at homes is Watching TV, which together with Using PC, results in a high energy demand in an aggregate level. Results obtained enable identify prospective targets for load control and for efficiency energy reduction recommendations to residential consumers.
Resumo:
Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 73 domestic households across three cities have been studied. This was carried out through a questionnaire survey, calculated national metering data and electricity measurements. All together nine appliance groups were identified. The results showed the mean electricity consumption for the households considering the calculated consumption from bills and the survey to be t = 4.23; p < 0.000067, two-tailed. The findings of this paper focus on a relatively small sample size (73). It would therefore not be wise to draw sweeping conclusions from the analysis or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.
Resumo:
Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 275 domestic households in Gaborone (the capital city of Botswana) have been studied. This was carried out through a questionnaire survey and electricity measurements. Households were categorized based on the number of people occupying the house. From the study, it was evident that the number of people influences the amount of energy a household use although this cannot be treated as an independent factor when assessing energy use. The study also indicated that heating, cooling and domestic hot water (DHW) account for over 30% of energy used in the home. This is worth considering in energy consumption reduction measures. Due to a small sample size, it would not be wise to draw sweeping conclusions from the analysis of this paper or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.
Resumo:
It is widely accepted that there is a gap between design energy and real world operational energy consumption. The behaviour of occupants is often cited as an important factor influencing building energy performance. However, its consideration, both during design and operation, is overly simplistic, often assuming a direct link between attitudes and behaviour. Alternative models of decision making from psychology highlight a range of additional influential factors and emphasise that occupants do not always act in a rational manner. Developing a better understanding of occupant decision making could help inform office energy conservation campaigns as well as models of behaviour employed during the design process. This paper assesses the contribution of various behavioural constructs on small power consumption in offices. The method is based upon the Theory of Planned Behaviour (TPB) which assumes that intention is driven by three factors: attitude, subjective norms, and perceived behavioural control, but we also consider a fourth construct: habit measured through the Self- Report Habit Index (SRHI). A questionnaire was issued to 81 participants in two UK offices. Questionnaire results for each behavioural construct were correlated against each participant’s individual workstation electricity consumption. The intentional processes proposed by TPB could not account for the observed differences in occupants’ interactions with small power appliances. Instead, occupants were interacting with small power “automatically”, with habit accounting for 11% of the variation in workstation energy consumption. The implications for occupant behaviour models and employee engagement campaigns are discussed.
Resumo:
The article is about using of variable frequency drives for reduction oil pumping main line pumps energy consumption. Block diagram of developed computer program is shown in the article. The computer program allows to determine the reduction of energy consumption and to estimate payback period of variable frequency drives.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Focus of this thesisis made on development of electricity sector of Russian North-West. The objective was to determine the most likely scenarios for development of the most critical (western) part of Interregional Power System of North-West, from where the most part of Russian electricity exports to the countries of European Union take place. For this purpose all the involved sides were analyzed: generation, transmission system and electricity consumption in different regions of Russian North-West. The analysis was performed through investigation of existing generation andtransmission capacities and plans for their development to be performed by the generation and transmission companies operating in the region. Principles of Russian electricity sector restructuring and electricity market design are also discussed as well as factors that may influence on future electricity price in the region.
Resumo:
In recent decades, business intelligence (BI) has gained momentum in real-world practice. At the same time, business intelligence has evolved as an important research subject of Information Systems (IS) within the decision support domain. Today’s growing competitive pressure in business has led to increased needs for real-time analytics, i.e., so called real-time BI or operational BI. This is especially true with respect to the electricity production, transmission, distribution, and retail business since the law of physics determines that electricity as a commodity is nearly impossible to be stored economically, and therefore demand-supply needs to be constantly in balance. The current power sector is subject to complex changes, innovation opportunities, and technical and regulatory constraints. These range from low carbon transition, renewable energy sources (RES) development, market design to new technologies (e.g., smart metering, smart grids, electric vehicles, etc.), and new independent power producers (e.g., commercial buildings or households with rooftop solar panel installments, a.k.a. Distributed Generation). Among them, the ongoing deployment of Advanced Metering Infrastructure (AMI) has profound impacts on the electricity retail market. From the view point of BI research, the AMI is enabling real-time or near real-time analytics in the electricity retail business. Following Design Science Research (DSR) paradigm in the IS field, this research presents four aspects of BI for efficient pricing in a competitive electricity retail market: (i) visual data-mining based descriptive analytics, namely electricity consumption profiling, for pricing decision-making support; (ii) real-time BI enterprise architecture for enhancing management’s capacity on real-time decision-making; (iii) prescriptive analytics through agent-based modeling for price-responsive demand simulation; (iv) visual data-mining application for electricity distribution benchmarking. Even though this study is from the perspective of the European electricity industry, particularly focused on Finland and Estonia, the BI approaches investigated can: (i) provide managerial implications to support the utility’s pricing decision-making; (ii) add empirical knowledge to the landscape of BI research; (iii) be transferred to a wide body of practice in the power sector and BI research community.
Resumo:
If electricity users adjusted their consumption patterns according to time-variable electricity prices or other signals about the state of the power system, generation and network assets could be used more efficiently, and matching intermittent renewable power generation with electricity demand would be facilitated. This kind of adjustment of electricity consumption, or demand response, may be based on consumers’ decisions to shift or reduce electricity use in response to time-variable electricity prices or on the remote control of consumers’ electric appliances. However, while demand response is suggested as a solution to many issues in power systems, actual experiences from demand response programs with residential customers are mainly limited to short pilots with a small number of voluntary participants, and information about what kinds of changes consumers are willing and able to make and what motivates these changes is scarce. This doctoral dissertation contributes to the knowledge about what kinds of factors impact on residential consumers’ willingness and ability to take part in demand response. Saving opportunities calculated with actual price data from the Finnish retail electricity market are compared with the occurred supplier switching to generate a first estimate about how large savings could trigger action also in the case of demand response. Residential consumers’ motives to participate in demand response are also studied by a web-based survey with 2103 responses. Further, experiences of households with electricity consumption monitoring systems are discussed to increase knowledge about consumers’ interest in getting more information on their electricity use and adjusting their behavior based on it. Impacts of information on willingness to participate in demand response programs are also approached by a survey for experts of their willingness to engage in demand response activities. Residential customers seem ready to allow remote control of electric appliances that does not require changes in their everyday routines. Based on residents’ own activity, the electricity consuming activities that are considered shiftable are very limited. In both cases, the savings in electricity costs required to allow remote control or to engage in demand response activities are relatively high. Nonmonetary incentives appeal to fewer households.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.
Resumo:
Electricity consumption in Ghana is estimated to be increasing by 10% per annum due to the demand from the growing population. However, current sources of production (hydro and thermal facilities) generate only 66% of the current demand. Considering current trends, it is difficult to substantiate these basic facts, because of the lack of information. As a result, research into the existing sources of generating electricity, electricity consumption and prospective projects has been performed. This was achieved using three key techniques; review of literature, empirical studies and modelling. The results presented suggest that, current annual installed capacity of energy generation (i.e. 1960 MW) must be increased to 9,405.59 MW, assuming 85% plant availability. This is then capable to coop with the growing demand and it would give access to the entire population as well as support commercial and industrial activities for the growth of the economy. The prospect of performing this research is with the expectation to present an academic research agenda for further exploration into the subject area, without which the growth of the country would be stagnant.