995 resultados para elbow joint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foram estudados o arranjo e o diâmetro médio das fibrilas colágenas do ligamento colateral medial da articulação do cotovelo do cão, isolado ou associado ao ligamento oblíquo e tracionado até a ruptura. Dezoito articulações foram divididas em três grupos. O primeiro grupo teve o ligamento colateral medial coletado, mas não tracionado; o segundo grupo teve o ligamento colateral medial tracionado isoladamente; o terceiro grupo teve os ligamentos colateral medial e oblíquo tracionados associadamente. O ligamento colateral medial não submetido ao ensaio de tração apresentou um padrão ondulado das fibras colágenas, o qual não foi totalmente destruído quando foi tracionado, associado ao ligamento oblíquo, e perdeu totalmente o padrão reticular das fibras colágenas quando testado isoladamente. Quando o ligamento colateral medial foi submetido à tensão isoladamente, o diâmetro médio das fibrilas colágenas aumentou em relação ao grupo não submetido à tensão. Associado ao ligamento oblíquo, o diâmetro médio das fibrilas colágenas foi o maior na região de inserção e o menor na região média, em relação aos outros grupos. Concluiu-se que o ligamento oblíquo pode favorecer a integridade da região de inserção do ligamento colateral medial, aumentando a eficácia de sua reconstrução após a lesão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the oblique ligament mechanical contribution to the medial collateral ligament of the canine elbow joint. Fifteen dogs were used for the study of the failure load, displacement, and energy absorption of the medial collateral and oblique ligaments of the canine elbow joint, associate and separately in the joint. Medial collateral ligament failure load and energy absorption were significantly higher in relation to the isolated oblique ligament. When the ligaments were associated in the joint, they presented an increment in failure load, displacement and energy absorption in relation to the ligaments analyzed separately. It was concluded, therefore, that the oblique ligament could have an important paper in the stability of the canine elbow joint, as it favors the medial collateral ligament resistance to the tensile load, one of the main stabilizer of the elbow joint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The joint torque is an important variable related to children with cerebral palsy. The present study analyzed kinetic parameters during elbow flexion and extension movements in healthy and cerebral palsy children. Ten healthy and 10 cerebral palsy children participated of the study. An isokinetic dynamometer was used to measure the elbow mean peak torque, mean angle peak torque, coefficient of variation and acceleration during flexion and extension movements at different angular speeds. The mean peak torque on extension movement in healthy children group was significant higher compared to the cerebral palsy group. The coefficient of variation on both flexion and extension movements was significantly higher in cerebral palsy group. However there were significantly difference on both groups compared the lowest and highest velocities. Although the results showed no difference in flexor peak torque, the acceleration is significantly lower in lowest and highest angular velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent application of computer simulation is its use for the human body, which resembles a mechanism that is complemented by torques in the joints that are caused by the action of muscles and tendons. Among others, the application can be used to provide training in surgical procedures or to learn how the body works. Some of the other applications are to make a biped walk upright, to build robots that are designed on the human body or to make prostheses or robot arms to perform specific tasks. One of the uses of simulation is to optimise the movement of the human body by examining which muscles are activated and which should or should not be activated in order to improve a person?s movements. This work presents a model of the elbow joint, and by analysing the constraint equations using classic methods we go on to model the bones, muscles and tendons as well as the logic linked to the force developed by them when faced with a specific movement. To do this, we analyse the reference bibliography and the software available to perform the validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the position of the head and neck have been shown to introduce a systematic deviation in the end-point error of an upper limb pointing task. Although previous authors have attributed this to alteration of perceived target location, no studies have explored the effect of changes in head and neck position on the perception of limb position. This study investigated whether changes in head and neck position affect a specific component of movement performance, that is, the accuracy of joint position sense (JPS) at the elbow. Elbow JPS was tested with the neck in four positions: neutral, flexion, rotation and combined flexion/rotation. A target angle was presented passively with the neck in neutral, after a rest period; this angle was reproduced actively with the head and neck in one of the test positions. The potential effects of distraction from head movement were controlled for by performing a movement control in which the head and neck were in neutral for the presentation and reproduction of the target angle, but moved into flexion during the rest period. The absolute and variable joint position errors (JPE) were greater when the target angle was reproduced with the neck in the flexion, rotation, and combined flexion/rotation than when the head and neck were in neutral. This study suggests that the reduced accuracy previously seen in pointing tasks with changes in head position may be partly because of errors in the interpretation of arm position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: It has been shown that perception of elbow joint position is affected by changes in head and neck position. Further, people with whiplash-associated disorders (WAD) present with deficits in upper limb coordination and movement. Objectives: This study is aimed to determine whether the effect of changes in head position on elbow joint position error (JPE) is more pronounced in people with WAD, and to determine whether this is related to the participant's pain and anxiety levels. Methods: Nine people with chronic and disabling WAD and 11 healthy people participated in this experiment. The ability to reproduce a position at the elbow joint was assessed after changes in the position of the head and neck to 30 degrees, and with the head in the midline. Pain was monitored in WAD participants. Results: Absolute elbow JPE with the head in neutral was not different between WAD and control participants (P = 0.5). Changes in the head and neck position increased absolute elbow JPE in the WAD group (P < 0.05), but did not affect elbow JPE in the control group (P = 0.4). There was a connection between pain during testing and the effect of changes in head position on elbow JPE (P < 0.05). Discussion: Elbow JPE is affected by movement of the head and neck, with smaller angles of neck rotation in people with WAD than in healthy individuals. This observation may explain deficits in upper limb coordination in people with WAD, which may be due to the presence of pain or reduced range of motion in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we report the findings of a comparative study of the elbow joints of five species of macaque that inhabit China: Macaca assamensis, M. arctoides, M. mulatta, M. thibetana and M. nemestrina. Results of multivariate analyses of size-related variables and indices of the elbow joint suggested that the breadths of the ventral aspect of the trochlea and of the medial epicondyle of the humerus as well as indices describing the head of the radius are important factors for discriminating these species. The elbow joint of M. arctoides was most similar to that of M. thibetana, no doubt reflecting recency of common ancestry and similarity in terrestrial locomotion. The structures of the elbow joints in M. nemestrina and assamensis seemed more adapted to arboreal quadrupedalism. The elbow joint of M. mulatta, however, appears intermediate between the most terrestrial and the most arboreal forms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The loss of motor function at the elbow joint can result as a consequence of stroke. Stroke is a clinical illness resulting in long lasting neurological deficits often affecting somatosensory and motor cortices. More than half of those that recover from a stroke survive with disability in their upper arm and need rehabilitation therapy to help in regaining functions of daily living. In this paper, we demonstrated a prototype of a low-cost, ultra-light and wearable soft robotic assistive device that could aid administration of elbow motion therapies to stroke patients. In order to assist the rotation of the elbow joint, the soft modules which consist of soft wedge-like cellular units was inflated by air to produce torque at the elbow joint. Highly compliant rotation can be naturally realised by the elastic property of soft silicone and pneumatic control of air. Based on the direct visual-actuation control, a higher control loop utilised visual processing to apply positional control, the lower control loop was implemented by an electronic circuit to achieve the desired pressure of the soft modules by Pulse Width Modulation. To examine the functionality of the proposed soft modular system, we used an anatomical model of the upper limb and performed the experiments with healthy participants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: To investigate topographic and age-dependent adaptation of subchondral bone density in the elbow joints of healthy dogs by means of computed tomographic osteoabsorptiometry (CTOAM). Animals-42 elbow joints of 29 clinically normal dogs of various breeds and ages. PROCEDURES: Subchondral bone densities of the humeral, radial, and ulnar joint surfaces of the elbow relative to a water-hydroxyapatite phantom were assessed by means of CTOAM. Distribution patterns in juvenile, adult, and geriatric dogs (age, < 1 year, 1 to 8 years, and > 8 years, respectively) were determined and compared within and among groups. RESULTS: An area of increased subchondral bone density was detected in the humerus distomedially and cranially on the trochlea and in the olecranon fossa. The ulna had maximum bone densities on the anconeal and medial coronoid processes. Increased bone density was detected in the craniomedial region of the joint surface of the radius. A significant age-dependent increase in subchondral bone density was revealed in elbow joint surfaces of the radius, ulna, and humerus. Mean subchondral bone density of the radius was significantly less than that of the ulna in paired comparisons for all dogs combined and in adult and geriatric, but not juvenile, dog groups. CONCLUSIONS AND CLINICAL RELEVANCE: An age-dependent increase in subchondral bone density at the elbow joint was revealed. Maximal relative subchondral bone densities were detected consistently at the medial coronoid process and central aspect of the humeral trochlea, regions that are commonly affected in dogs with elbow dysplasia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: To determine if the receptor activator of nuclear factor-kappaB-receptor activator of nuclear factor-kappaB ligand-osteoprotegerin (RANK-RANKL-OPG) system is active in bone remodeling in dogs and, if so, whether differences in expression of these mediators occur in healthy and arthritic joints. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Fragmented processus coronoidei (n=20) were surgically removed from dogs with elbow arthritis and 5 corresponding healthy samples from dogs euthanatized for reasons other than elbow joint disease. METHODS: Bright-field immunohistochemistry and high-resolution fluorescence microscopy were used to investigate the distribution of RANK, RANKL, and OPG in healthy and arthritic joints. RESULTS: All 3 molecules were identified by immunostaining of canine bone tissue. In elbow dysplasia, the number of RANK-positive osteoclasts was increased. In their vicinity, cells expressing RANKL, a mediator of osteoclast activation, were abundant whereas the number of osteoblasts having the potential to limit osteoclastogenesis and bone resorption via OPG was few. CONCLUSIONS: The RANK-RANKL-OPG system is active in bone remodeling in dogs. In elbow dysplasia, a surplus of molecules promoting osteoclastogenesis was evident and is indicative of an imbalance between the mediators regulating bone resorption and bone formation. Both OPG and neutralizing antibodies against RANKL have the potential to counterbalance bone resorption. CLINICAL RELEVANCE: Therapeutic use of neutralizing antibodies against RANKL to inhibit osteoclast activation warrants further investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.