682 resultados para effective loading


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The time varying intensity character of a load applied to a structure poses many difficulties in analysis. A remedy to this situation is to substitute a complex pulse shape by a rectangular equivalent one. It has been shown by others that this procedure works well for perfectly plastic elementary structures. This paper applies the concept of equivalent pulse to more complex structures. Special attention is given to the material behavior, which is allowed to be strain rate and strain hardening sensitive. Thanks to the explicit finite element solution, it is shown in this article that blast loads applied to complex structures made of real materials can be substituted by equivalent rectangular loads with both responses being practically the same. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most potent cell type for capture, processing, and presentation of antigens. They are able to activate naïve T cells as well as to initiate memory T-cell immune responses. T lymphocytes are key elements in eliciting cellular immunity against bacteria and viruses as well as in the generation of anti-tumor and anti-leukemia immune responses. Because of their central position in the immunological network, specific manipulations of these cell types provide promising possibilities for novel immunotherapies. Nanoparticles (NP) that have just recently been investigated for use as carriers of drugs or imaging agents, are well suited for therapeutic applications in vitro and also in vivo since they can be addressed to cells with a high target specificity upon surface functionalization. As a first prerequisite, an efficient in vitro labeling of cells with NP has to be established. In this work we developed protocols allowing an effective loading of human monocyte-derived DCs and primary antigen-specific T cells with newly designed NP without affecting biological cell functions. Polystyrene NP that have been synthesized by the miniemulsion technique contained perylenmonoimide (PMI) as a fluorochrome, allowing the rapid determination of intracellular uptake by flow cytometry. To confirm intracellular localization, NP-loaded cells were analyzed by confocal laser scanning microscopy (cLSM) and transmission electron microscopy (TEM). Functional analyses of NP-loaded cells were performed by IFN-γ ELISPOT, 51Chromium-release, and 3H-thymidine proliferation assays. In the first part of this study, we observed strong labeling of DCs with amino-functionalized NP. Even after 8 days 95% of DCs had retained nanoparticles with a median fluorescence intensity of 67% compared to day 1. NP loading did not influence expression of cell surface molecules that are specific for mature DCs (mDCs) nor did it influence the immunostimulatory capacity of mDCs. This procedure did also not impair the capability of DCs for uptake, processing and presentation of viral antigens that has not been shown before for NP in DCs. In the second part of this work, the protocol was adapted to the very different conditions with T lymphocytes. We used leukemia-, tumor-, and allo-human leukocyte antigen (HLA) reactive CD8+ or CD4+ T cells as model systems. Our data showed that amino-functionalized NP were taken up very efficiently also by T lymphocytes, which usually had a lower capacity for NP incorporation compared to other cell types. In contrast to DCs, T cells released 70-90% of incorporated NP during the first 24 h, which points to the need to escape from intracellular uptake pathways before export to the outside can occur. Preliminary data with biodegradable nanocapsules (NC) revealed that encapsulated cargo molecules could, in principle, escape from the endolysosomal compartment after loading into T lymphocytes. T cell function was not influenced by NP load at low to intermediate concentrations of 25 to 150 μg/mL. Overall, our data suggest that NP and NC are promising tools for the delivery of drugs, antigens, and other molecules into DCs and T lymphocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the effective width of reinforced concrete flat slab structures subjected to seismic loading on the basis of dynamic shaking table tests. The study is focussed on the behavior of corner slab? column connections with structural steel I- or channel-shaped sections (shearheads) as shear punching reinforcement. To this end, a 1/2 scale test model consisting of a flat slab supported on four box-type steel columns was subjected to several seismic simulations of increasing intensity. It is found from the test results that the effective width tends to increase with the intensity of the seismic simulation, and this increase is limited by the degradation of adherence between reinforcing steel and concrete induced by the strain reversals caused by the earthquake. Also, significant differences are found between the effective width obtained from the tests and the values predicted by formula proposed in the literature. These differences are attributed to the stiffening effect provided by the steel profiles that constitute the punching shear reinforcement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Civil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 The objective of this thesis work was to assess axial misalignment in fatigue loaded welds using the effective notch method. As a result, the fatigue behaviour of non-load carrying cruciform fillet welded joint under cyclic tensile loading has been studied. Various degrees of axial misalignment have been found in one series of non-load carrying cruciform fillet welded joints used in a laboratory investigation. As a result, it was important to carry out a comprehensive investigation since axial misalignment forms part of thequality of fatigue loaded structure and can reduce the fatigue strength. To extend the study, the correlation between fatigue strength and stress ratio, as well as stress concentration factor, were also studied. Moreover, a closer investigation of place of crack initiation and its dependence on weld sequence and imperfections of test specimen (angular distortion) was studied. For the fatigue class calculations, FEM (finite element method) and the effectivenotch approach are used. The addressed variable is the axial misalignment whichis introduce by modeling the entire joint. Fracture mechanics based calculations are also used and quantitatively compared with effective notch and experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rectangular hollow section (RHS) members are components widely used in engineering applications because of their good-looking, good properties in engineering areas and inexpensive cost comparing to members with other sections. The increasing use of RHS in load bearing structures makes it necessary to analyze the fatigue behavior of the RHS members. In this thesis, concentration will be given to the fatigue behavior of the RHS members under variable amplitude pure torsional loading. For the RHS members, failure will normally occur in the corner region if the welded regions are under full penetration. This is because of the complicated stress components' distributions at the RHScorners, where all of three fracture mechanics modes will happen. Mode I is mainly caused by the residual stresses that caused by the manufacturing process. Modes II and III are caused by the applied torsional loading. Stress based Findleymodel is also used to analyze the stress components. Constant amplitude fatigue tests have been done as well as variable amplitude fatigue tests. The specimens under variable amplitude loading gave longer fatigue lives than those under constant amplitude loading. Results from tests show an S-N curvewith slope around 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automated Fiber Placement is being extensively used in the production of major composite components for the aircraft industry. This technology enables the production of tow-steered panels, which have been proven to greatly improve the structural efficiency of composites by means of in-plane stiffness variation and load redistribution. However, traditional straight-fiber architectures are still preferred. One of the reasons behind this is related to the uncertainties, as a result of process-induced defects, in the mechanical performance of the laminates. This experimental work investigates the effect of the fiber angle discontinuities between different tow courses in a ply on the un-notched and open-hole tensile strength of the laminate. The influence of several manufacturing parameters are studied in detail. The results reveal that 'ply staggering' and '0% gap coverage' is an effective combination in reducing the influence of defects in these laminates

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to functional requirement of a structural detail brackets with and without scallop are frequently used in bridges, decks, ships and offshore structure. Scallops are designed to serve as passage way for fluids, to reduce weld length and plate distortions. Moreover, scallops are used to avoid intersection of two or more welds for the fact that there is the presence of inventible inherent initial crack except for full penetrated weld and the formation of multi-axial stress state at the weld intersection. Welding all around the scallop corner increase the possibility of brittle fracture even for the case the bracket is not loaded by primary load. Avoiding of scallop will establish an initial crack in the corner if bracket is welded by fillet welds. If the two weld run pass had crossed, this would have given a 3D residual stress situation. Therefore the presences and absence of scallop necessitates the 3D FEA fatigue resistance of both types of brackets using effective notch stress approach ( ). FEMAP 10.1 with NX NASTRAN was used for the 3D FEA. The first and main objective of this research was to investigate and compare the fatigue resistance of brackets with and without scallop. The secondary goal was the fatigue design of scallops in case they cannot be avoided for some reason. The fatigue resistance for both types of brackets was determined based on approach using 1 mm fictitiously rounded radius based on IIW recommendation. Identical geometrical, boundary and loading conditions were used for the determination and comparison of fatigue resistance of both types of brackets using linear 3D FEA. Moreover the size effect of bracket length was also studied using 2D SHELL element FEA. In the case of brackets with scallop the flange plate weld toe at the corner of the scallop was found to exhibit the highest and made the flange plate weld toe critical for fatigue failure. Whereas weld root and weld toe at the weld intersections were the highly stressed location for brackets without scallop. Thus weld toe for brackets with scallop, and weld root and weld toe for brackets without scallop were found to be the critical area for fatigue failure. Employing identical parameters on both types of brackets, brackets without scallop had the highest except for full penetrated weld. Furthermore the fatigue resistance of brackets without scallop was highly affected by the lack of weld penetration length and it was found out that decreased as the weld penetration was increased. Despite the fact that the very presence of scallop reduces the stiffness and also same time induce stress concentration, based on the 3D FEA it is worth concluding that using scallop provided better fatigue resistance when both types of brackets were fillet welded. However brackets without scallop had the highest fatigue resistance when full penetration weld was used. This thesis also showed that weld toe for brackets with scallop was the only highly stressed area unlike brackets without scallop in which both weld toe and weld root were the critical locations for fatigue failure when different types of boundary conditions were used. Weld throat thickness, plate thickness, scallop radius, lack of weld penetration length, boundary condition and weld quality affected the fatigue resistance of both types of brackets. And as a result, bracket design procedure, especially welding quality and post weld treatment techniques significantly affect the fatigue resistance of both type of brackets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrial swine production is characterized by generation of significant effluent amounts that require treatment. The most adopted practices by Brazilian swine farmers have been wastewater storage in lagoons and its subsequent use as a biofertilizer. Nutrient accumulation in soil and water creates the need for an effective management of these residues. The anaerobic digestion process is an important alternative and low-cost treatment for organic matter reduction. However, its efficiency is limited by the digester capacity of solid degradation, especially at low hydraulic retention times. Thus, the present study aimed to verify the behavior of an upflow anaerobic digester by increasing the organic loading rate. This was accomplished in three stages using, as a parameter, volatile solids at 0.5; 1.0 and 1.5 kgVS m-3 d-1, respectively. This digester model proved to be quite robust and effective in swine manure treatment, achieving high efficiency of volatile solid removal at all stages of the study (stage 1: 61.38%; stage 2: 55.18%; and stage 3: 43.18%). Biogas production was directly related to the increasing organic load, reaching 0.14, 0.85, and 0.86 Nm³ kgVS-1add., respectively, with no significant difference (p<0.05) of biogas methane concentration among the studied stages (73.7, 75.0, and 77.9%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue failure of structures under fluctuating loads in fillet weld joints raises a demand to determine the parameters related to this type of loading. In this study, the stress distribution in the susceptible area of weld toe and weld root in fillet welded models analyzed by finite element method applying FEMAP software. To avoid the geometrical singularity on the path of analytical stress analysis in the toe and root area of a weld model the effective notch stress approach applied by which a proper fictitious rounding that mostly depend on the material of structure is applied. The models with different weld toe waving width and radius are analyzed while the flank angle of weld varied in 45 and 30 degrees. The processed results shows that the waving compare to the straight weld toe makes differences in the value of stress and consequently the stress concentration factor between the tip and depth of the waves in the weld toe which helps to protect the crack of propagation and gives enough time and tools to be informed of the crack initiation in the structure during the periodical observation of structure. In the weld root study the analyses among the models with the welding penetration percentage from non-penetration to the full-penetration shows a slightly increase in the root area stress value which comparing with the stiffening effect of penetration conclude that the half-penetration can make an optimization between the stress increase and stiffening effect of deep penetration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, finite element analyses and experimental tests are carried out in order to investigate the effect of loading type and symmetry on the fatigue strength of three different non-load carrying welded joints. The current codes and recommendations do not give explicit instructions how to consider degree of bending in loading and the effect of symmetry in the fatigue assessment of welded joints. The fatigue assessment is done by using effective notch stress method and linear elastic fracture mechanics. Transverse attachment and cover plate joints are analyzed by using 2D plane strain element models in FEMAP/NxNastran and Franc2D software and longitudinal gusset case is analyzed by using solid element models in Abaqus and Abaqus/XFEM software. By means of the evaluated effective notch stress range and stress intensity factor range, the nominal fatigue strength is assessed. Experimental tests consist of the fatigue tests of transverse attachment joints with total amount of 12 specimens. In the tests, the effect of both loading type and symmetry on the fatigue strength is studied. Finite element analyses showed that the fatigue strength of asymmetric joint is higher in tensile loading and the fatigue strength of symmetric joint is higher in bending loading in terms of nominal and hot spot stress methods. Linear elastic fracture mechanics indicated that bending reduces stress intensity factors when the crack size is relatively large since the normal stress decreases at the crack tip due to the stress gradient. Under tensile loading, experimental tests corresponded with finite element analyzes. Still, the fatigue tested joints subjected to bending showed the bending increased the fatigue strength of non-load carrying welded joints and the fatigue test results did not fully agree with the fatigue assessment. According to the results, it can be concluded that in tensile loading, the symmetry of joint distinctly affects on the fatigue strength. The fatigue life assessment of bending loaded joints is challenging since it depends on whether the crack initiation or propagation is predominant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although they are considered as antigen presenting cells (APC), the role of antigen-unspecific B-lymphocytes in antigen presentation and T lymphocyte stimulation remains controversial. In this paper, we tested the capacity of normal human peripheral activated B cells to stimulate T cells using melanoma antigens or melanoma cell lysates. B lymphocytes activated through CD40 ligation and then pulsed with tumor antigens efficiently processed and presented MHC class II restricted peptides to specific CD4+ T cell clones. This suggests that CD40-activated B cells have the functional and molecular competence to present MHC class II epitopes when pulsed with exogenous antigens, thereby making them a relevant source of APC to generate T cells. To test this hypothesis, CD40-activated B cells were pulsed with a lysate prepared from melanoma cells and used to stimulate peripheral autologous T cells. Interestingly, T cells specific to melanoma antigens were generated. Further analysis of these T cell clones revealed that they recognized MHC class II restricted epitopes from tyrosinase, a known melanoma tumor antigen. The efficient antigen presentation by antigen-unspecific activated B cells was correlated with a down-regulation in the expression of HLA-DO, a B cell specific protein known to interfere with HLA-DM function. Because HLA-DM is important in MHC class II peptide loading, the observed decrease in HLA-DO may partially explain the enhanced antigen presentation following B-cell activation. Results globally suggest that when they are properly activated, antigen-unspecific B-lymphocytes can present exogenous antigens by MHC class II molecules and stimulate peripheral antigen-specific T cells. Antigen presentation by activated B cells could be exploited for immunotherapy by allowing the in vitro generation of T cells specific against antigens expressed by tumors or viruses.