994 resultados para effective bond
Resumo:
This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length was found to be similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough. The Hart-Smith Model was modified to predict the effective bond length and ultimate load carrying capacity of joints between the normal modulus CFRP and steel plates. The Multilayer Distribution Model developed by the authors was modified to predict the load carrying capacity of joints between the high modulus CFRP and steel plates. The predicted values agreed well with experimental ones.
Resumo:
This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.
Resumo:
Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.
Resumo:
Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.
Resumo:
This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.
Resumo:
This study evaluated the influence of surface treatment on the shear bond strength of a composite resin (CR), previously submitted to the application of a temporary cement (TC), to an adhesive luting cement. Eight-four CR cylinders (5 mm diameter and 3 mm high) were fabricated and embedded in acrylic resin. The sets were divided into 6 groups (G1 to G6) (n=12). Groups 2 to 6 received a coat of TC. After 24 h, TC was removed and the CR surfaces received the following treatments: G2: ethanol; G3: rotary brush and pumice; G4: air-abrasion; G5: air-abrasion and adhesive system; G6: air-abrasion, acid etching and adhesive system. G1 (control) did not receive TC or any surface treatment. The sets were adapted to a matrix and received an increment of an adhesive luting cement. The specimens were subjected to the shear bond strength test. ANOVA and Tukey's tests showed that G3 (8.53 MPa) and G4 (8.63 MPa) differed significantly (p=0.001) from G1 (13.34 MPa). The highest mean shear bond strength values were found in G5 (14.78 MPa) and G6 (15.86 MPa). Air-abrasion of CR surface associated with an adhesive system provided an effective bond of the CR to the adhesive luting cement, regardless the pre-treatment with the phosphoric acid.
Resumo:
This paper describes the behaviour of very high strength (VHS) circular steel tubes strengthened by carbon fibre reinforced polymer (CFRP) and subjected to axial tension. A series of tests were conducted with different bond lengths and number of layers. The distribution of strain through the thickness of CFRP layers and along CFRP bond length was studied. The strain was found to generally decrease along the CFRP bond length far from the joint. The strain through the thickness of the CFRP layers was also found to decrease from bottom to top layer. The effective bond length for high modulus CFRP was established. Finally empirical models were developed to estimate the maximum load for a given CFRP arrangement.
Resumo:
Carbon fibre reinforced polymer (CFRP) sheets have many outstanding properties such as high strength, high elastic modulus, light weight and good durability which are made them a suitable alternative for steel in strengthening work. This paper describe the ultimate load carrying capacity of steel hollow sections at effective bond length in terms of its cross sectional area and the stress distribution within bond region for different layers CFRP. It was found that depending on their size and orientation of uni- directional CFRP layers, the ultimate tensile load was different. Along with these tests, non linear finite element analysis was also performed to validate the ultimate load carrying capacity depending on their cross sections. The predicted ultimate loads from FE analysis are found very close to the laboratory test results. The validated model has been used to determine the stress distribution at bond joint for different orientation of CFRP. This research shows the effect of stress distribution and suitable wrapping layer to be used for the strengthening of steel hollow sections in tension.
Resumo:
Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.
Resumo:
This paper presents a nonlinear finite element (FE) model for the analysis of very high strength (VHS) steel hollow sections wrapped by high modulus carbon fibre rein forced polymer (CFRP) sheets. The bond strength of CFRP wrapped VHS circular steel hollow section under tension is investigated using the FE model. The three dimensional FE model by Nonlinear static analysis has been carried out by Strand 7 finite element software. The model is validated by the experimental data obtained from Fawzia et al [1]. A detail parametric study has been performed to examine the effect of number of CFRP layers, different diameters of VHS steel tube and different bond lengths of CFRP sheet. The analytical model developed by Fawzia et al. [1] has been used to determine the load carrying capacity of different diameters of CFRP strengthened VHS steel tube by using the capacity from each layer of CFRP sheet. The results from FE model have found in reasonable agreement with the analytical model developed by Fawzia et al [1]. This validation was necessary because the analytical model by Fawzia et al [1] was developed by using only one diameter of VHS steel tube and fixed (five) number of CFRP layers. It can be concluded that the developed analytical model is valid for CFRP strengthened VHS steel tubes with diameter range of 38mm to 100mm and CFRP layer range of 3 to 5 layers. Based on the results it can also be concluded that the effective bond length is consistent for different diameters of steel tubes and different layers of CFRP. Three layers of CFRP is considered most effective wrapping scheme due to the cost effectiveness. Finally the distribution of longitudinal and hoop stress has been determined by the finite element model for different diameters of CFRP strengthened VHS steel tube.
Resumo:
A meso-scale finite element model is presented for investigating the FRP-concrete bond behaviour under static and dynamic loadings. It adopts a local concrete damage model. A large number of single shear tests under static pull-off loading were modeled. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of the load-carrying capacity and the local bond-slip behaviour. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.
Resumo:
L’attrait des compagnies pharmaceutiques pour des structures cycliques possédant des propriétés biologiques intéressantes par les compagnies pharmaceutiques a orienté les projets décrits dans ce mémoire. La synthèse rapide, efficace, verte et économique de ces structures suscite de plus en plus d’attention dans la littérature en raison des cibles biologiques visées qui deviennent de plus en plus complexes. Ce mémoire se divise en deux projets ciblant la synthèse de deux structures aromatiques importantes dans le monde de la chimie médicinale. Dans un premier temps, l’amélioration de la synthèse de dérivés phénoliques a été réalisée. L’apport de la chimie en flux continu dans le développement de voies synthétiques plus vertes et efficaces sera tout d’abord discuté. Ensuite, une revue des antécédents concernant l’hydroxylation d’halogénure d’aryle sera effectuée. Finalement, le développement d’une nouvelle approche rapide de synthèse des phénols utilisant la chimie en flux continu sera présenté, suivi d’un survol de ses avantages et ses limitations. Dans un deuxième temps, le développement d’une nouvelle méthodologie pour la formation de 3-aminoindazoles a été réalisé. Tout d’abord, un résumé de la littérature sur la synthèse de différents indazoles sera présenté. Ensuite, une présentation de deux méthodes efficaces d’activation de liens sera effectuée, soit l’activation d’amides par l’anhydride triflique et l’activation de liens C–H catalysée par des métaux de transition. Finalement, le développement d’une nouvelle méthodologie pour la synthèse de 3-aminoindazole utilisant ces deux approches sera discuté.
Resumo:
Absolute intensity measurements have been made on the fundamental vibrations of ethylene and four of its deuteroisotopes. The bands were pressure broadened with nitrogen at 50 atmos, and the intensities were determined by the method of Wilson and Wells except that the observed optical density was integrated against logv rather than v. Normal coordinates have been calculated, and the intensities have been interpreted in terms of quantities (∂p/∂Si) giving the change in dipole moment with respect to each internal symmetry coordinate. Data from the different isotopic species have been used to eliminate ambiguities in the interpretation. Effective bond moments are calculated for each symmetry coordinate.
Resumo:
The intensity of the low fundamental of C2F6 at 219 cm—1 was measured using a CsI prism. This completed earlier studies on the other fundamentals, and permits extension and revision of the interpretation. Effective bond moments are compared with those of other fluorocarbons.