988 resultados para ecosystem structure
Resumo:
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the topdown effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire.We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.
Abandoned Coal Mine Drainage and Its Remediation: Impacts on Stream Ecosystem Structure and Function
Resumo:
The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and .10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogenacquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous (but not the anthracite) region. Denitrification was not detected in any stream. Water chemistry and macroinvertebrate community structure analyses capture the impact of AMD at the local reach scale, but functional measures revealed that AMD has ramifications that can cascade to downstream reaches and perhaps to receiving estuaries.
Resumo:
Stream restoration often focuses on increasing habitat heterogeneity to reverse ecosystem degradation. However, the connection between heterogeneity and ecosystem structure and processes is poorly understood. We looked to investigate this interaction from both applied and basic science perspectives. For the applied study, we examined two culvert replacements designed to mimic natural stream channels, to see if they were better at maintaining ecosystem processes within as well as upstream and downstream of culverts compared to non-replaced culverts. We measured three ecosystem processes (nutrient uptake, hydrologic characteristics, and coarse particulate organic matter retention) and found that stream simulation culvert restoration improved organic matter retention within culverts, and that there were no differences in processes measured upstream and downstream of both restoration designs. Our results suggest that measurements of ecosystem processes are more likely to show a response to restoration if they match the scale of the restoration activity. For the basic science study, we quantified the longitudinal spatial heterogeneity of physical and biofilm characteristics at microhabitat to segment scales on streams with different streambed variability. We found that all physical characteristics and biofilm characteristics were spatially independent at the macro-habitat scale and greater. Together, these studies demonstrate the importance of scale in ecological interactions and the value of incorporating considerations of scale into restoration activities.
Resumo:
Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.
Resumo:
From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.
Resumo:
An oligotrophic phosphorus (P) limited seagrass ecosystem in Florida Bay was experimentally fertilized in a unique way. Perches were installed to encourage seabirds to roost and deliver an external source of nutrients via defecation. Two treatments were examined: (1) a chronic 23-year fertilization and (2) an earlier 28-month fertilization that was discontinued when the chronic treatment was initiated. Because of the low mobility of P in carbonate sediments, we hypothesized long-term changes to ecosystem structure and function in both treatments. Structural changes in the chronic treatment included a shift in the dominant seagrass species from Thalassia testudinum to Halodule wrightii, large increases in epiphytic biomass and sediment chlorophyll-a, and a decline in species richness. Functional changes included increased benthic metabolism and quantum efficiency. Initial changes in the 28-month fertilization were similar, but after 23 years of nutrient depuration T. testudinum has reestablished itself as the dominant species. However, P remains elevated in the sediment and H. wrightii has maintained a presence. Functionally the discontinued treatment remains altered. Biomass exceeds that in the chronic treatment and indices of productivity, elevated relative to control, are not different from the chronic fertilization. Cessation of nutrient loading has resulted in a superficial return to the pre-disturbance character of the community, but due to the nature of P cycles functional changes persist.
Resumo:
Tree islands are an important structural component of many graminoid-dominated wetlands because they increase ecological complexity in the landscape. Tree island area has been drastically reduced with hydrologic modifications within the Everglades ecosystem, yet still little is known about the ecosystem ecology of Everglades tree islands. As part of an ongoing study to investigate the effects of hydrologic restoration on short hydroperiod marshes of the southern Everglades, we report an ecosystem characterization of seasonally flooded tree islands relative to locations described by variation in freshwater flow (i.e. locally enhanced freshwater flow by levee removal). We quantified: (1) forest structure, litterfall production, nutrient utilization, soil dynamics, and hydrologic properties of six tree islands and (2) soil and surface water physico-chemical properties of adjacent marshes. Tree islands efficiently utilized both phosphorus and nitrogen, but indices of nutrient-use efficiency indicated stronger P than N limitation. Tree islands were distinct in structure and biogeochemical properties from the surrounding marsh, maintaining higher organically bound P and N, but lower inorganic N. Annual variation resulting in increased hydroperiod and lower wet season water levels not only increased nitrogen use by tree species and decreased N:P values of the dominant plant species (Chrysobalanus icaco), but also increased soil pH and decreased soil temperature. When compared with other forested wetlands, these Everglades tree islands were among the most nutrient efficient, likely a function of nutrient immobilization in soils and the calcium carbonate bedrock. Tree islands of our study area are defined by: (1) unique biogeochemical properties when compared with adjacent short hydroperiod marshes and other forested wetlands and (2) an intricate relationship with marsh hydrology. As such, they may play an important and disproportionate role in nutrient and carbon cycling in Everglades wetlands. With the loss of tree islands that has occurred with the degradation of the Everglades system, these landscape processes may have been altered. With this baseline dataset, we have established a long-term ecosystem-scale experiment to follow the ecosystem trajectory of seasonally flooded tree islands in response to hydrologic restoration of the southern Everglades.
Resumo:
Shallow seagrass ecosystems frequently experience physical disturbance from vessel groundings. Specific restoration methods that modify physical, chemical, and biological aspects of disturbances are used to accelerate recovery. This study evaluated loss and recovery of ecosystem structure in disturbed seagrass meadows through plant and soil properties used as proxies for primary and secondary production, habitat quality, benthic metabolism, remineralization, and nutrient storage and exchange. The efficacy of common seagrass restoration techniques in accelerating recovery was also assessed. Beyond removal of macrophyte biomass, disturbance to seagrass sediments resulted in loss of organic matter and stored nutrients, and altered microbial and infaunal communities. Evidence of the effectiveness of restoration actions was variable. Fill placement prevented additional erosion, but the resulting sediment matrix had different physical properties, low organic matter content and nutrient pools, reduced benthic metabolism, and less primary and secondary production relative to the undisturbed ecosystem. Fertilization was effective in increasing nitrogen and phosphorus availability in the sediments, but concurrent enhancement of seagrass production was not detected. Seagrass herbivores removed substantial seagrass biomass via direct grazing, suggesting that leaf loss to seagrass herbivores is a spatially variable but critically important determinant of seagrass transplanting success. Convergence of plant and sediment response variables with levels in undisturbed seagrass meadows was not detected via natural recovery of disturbed sites, or through filling and fertilizing restoration sites. However, several indicators of ecosystem development related to primary production and nutrient accumulation suggest that early stages of ecosystem development have begun at these sites. This research suggests that vessel grounding disturbances in seagrass ecosystems create more complex and persistent resource losses than previously understood by resource managers. While the mechanics of implementing common seagrass restoration actions have been successfully developed by the restoration community, expectations of consistent or rapid recovery trajectories following restoration remain elusive.
Resumo:
Gomishan Wetland is situated in the extreme southern part of the eastern coast of Caspian Sea. It is connected to the Caspian Sea, so its hydrological features are directly generated from the sea. The whole wetland area (which also consists of the northern part of the wetland that is situated in Turkmenistan republic) is calculated with the aid of the Satellite Images for the years of 1977, 1987 and 1998 respectively 5070, 16320 and 29520 hectares. To have better ideas about food chains in the aquatic ecosystem, five permanent stations was appointed in different parts of the wetland. During one year field study, at the beginning of each month, physical, chemical and biological characteristics of the water and the sediment was surveyed and different specimens were gathered, fixed and took to the laboratories for the relevant analyses. The factors measured in water samples were mainly consist of turbidity, pH, EC, DO, BOD, PO4, NO3, alkalinity, Cl and hardness . The factors measured from sediment samples were the percentage of Sand, Very Fine Sand, Silt, Clay, K, P, N, and Organic Carbon. Biological examinations of the water has been consist of planktonic sample collections, determination, counting and analysis of both phyto and zoo planktons of the wetland. For example the zooplanktons of the Gomishan Wetland are determined in 15 groups, belonging to 5 phyla. The seasonal changes are recognized considerable. The least density of the zooplanktons is occurred in February. The density of most of the groups is seen from the beginning of the summer until the mid autumn. The annual mean density for any 15-zooplankton groups and also the minimum and maximum density with %95 confidences, for each of them, is calculated for the environment of all of the stations and also for the whole wetland. The spatial distribution of the individuals within the population of each of the groups is introduced, according to regular or contagious or random distribution. Diversity indices are calculated for the zooplanktons living in the environment of the stations. Comparison of the wetland, with the southeastern Caspian Sea, from the point of view of zooplankton density and diversity is also obtained. Benthos invertebrates in each station from sediment samples were also extracted. The specimens were colored by Rose Bengal solvent and then were determinate and counted, in separate groups of macro and meio benthos. Among the macro benthos, the highest density was seen in the species of Fyrgula caspia. After that, more density was seen respectively in Apra ovata, Cerastoderma sp., Balanus sp., Nerds divesicolarr, lifytilaster lineatus and Dreissena sp. Among the meio benthos, the most density was seen in Foraminifera and then respectively in Ostracoda, Nernatoda and Bivalve larvae. The indices of diversity and distribution are also calculated. As the birds in this lagoon are of prime importance, all mid winter waterfowl censuses available from recent 13 years are gathered and analysis. Also a whole year (12 times, each at the beginning of one month) waterfowl census was undertaken, throughout the wetland. According to this study, the Eastern Ecosystem of the wetland, is supporting the most population (%75) of the waterfowls, the Middle Open Water Ecosystem and the Western Reed bed Ecosystem, are supporting respectively %14 and %11 of the population. Four of the species are found in the global threatened red list, and the wintering population of the 20 species of the site, in some years, are observed more than %I of the global populations. The Waterfowl Species Diversity and Similarity Indices are given also.
Resumo:
Shallow seagrass ecosystems frequently experience physical disturbance from vessel groundings. Specific restoration methods that modify physical, chemical, and biological aspects of disturbances are used to accelerate recovery. This study evaluated loss and recovery of ecosystem structure in disturbed seagrass meadows through plant and soil properties used as proxies for primary and secondary production, habitat quality, benthic metabolism, remineralization, and nutrient storage and exchange. The efficacy of common seagrass restoration techniques in accelerating recovery was also assessed. Beyond removal of macrophyte biomass, disturbance to seagrass sediments resulted in loss of organic matter and stored nutrients, and altered microbial and infaunal communities. Evidence of the effectiveness of restoration actions was variable. Fill placement prevented additional erosion, but the resulting sediment matrix had different physical properties, low organic matter content and nutrient pools, reduced benthic metabolism, and less primary and secondary production relative to the undisturbed ecosystem. Fertilization was effective in increasing nitrogen and phosphorus availability in the sediments, but concurrent enhancement of seagrass production was not detected. Seagrass herbivores removed substantial seagrass biomass via direct grazing, suggesting that leaf loss to seagrass herbivores is a spatially variable but critically important determinant of seagrass transplanting success. Convergence of plant and sediment response variables with levels in undisturbed seagrass meadows was not detected via natural recovery of disturbed sites, or through filling and fertilizing restoration sites. However, several indicators of ecosystem development related to primary production and nutrient accumulation suggest that early stages of ecosystem development have begun at these sites. This research suggests that vessel grounding disturbances in seagrass ecosystems create more complex and persistent resource losses than previously understood by resource managers. While the mechanics of implementing common seagrass restoration actions have been successfully developed by the restoration community, expectations of consistent or rapid recovery trajectories following restoration remain elusive.
Resumo:
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m22). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Resumo:
One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P, and phosphatase activity), and summarizing them in a multifunctionality index (M). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43 and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2–80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species richness. Our study is the first documenting that ecosystem multifunctionality in shrublands is enhanced by encroaching shrubs differing in size and leaf attributes. Our findings reinforce the idea that encroachment effects on ecosystem functioning cannot be generalized, and that are largely dependent on the traits of the encroaching shrub relative to those of the species being replaced.
Resumo:
Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis ) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.