995 resultados para economic dose
Resumo:
Com o objetivo de estudar a relação entre doses de calcário e produção de carambolas, um experimento de campo foi conduzido em um Latossolo Vermelho distrófico, no município de Bebedouro(SP), no período de 1999 a 2006. O delineamento adotado foi o em blocos casualizados, com cinco tratamentos e quatro repetições. O calcário foi aplicado uma única vez em 1999, nas doses de: 0; 1,85; 3,71; 5,56 e 7,41 t ha-1. A produção das caramboleiras aumentou em resposta à aplicação do corretivo de acidez. As produções acumuladas de frutos, nos anos sucessivos de 2003, 2004, 2005 e 2006, estiveram associadas às doses mais econômicas de calcário de 4,5; 4,8; 5,3 e 5,3 t ha-1, respectivamente.
Resumo:
With the objective of studying the relationship between limestone doses and guava production, a field experiment was conducted on Oxisol soil in the town of Bebedouro-SP, from 1999 to 2006. The experimental design was randomized blocks with four replications. The limestone was used only once in 1999, at doses from zero, 1.85; 3.71; 5.56 and 7.41 t ha(-1). The guava production increased in response to the application of the acidity corrective. The accumulated production of fruits in successive years 2003, 2004, 2005 and 2006 were associated with economical doses of limestone of 1.6; 4.4; 7.2 and 7.2 t ha(-1) respectively.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
- Background Nilotinib and dasatinib are now being considered as alternative treatments to imatinib as a first-line treatment of chronic myeloid leukaemia (CML). - Objective This technology assessment reviews the available evidence for the clinical effectiveness and cost-effectiveness of dasatinib, nilotinib and standard-dose imatinib for the first-line treatment of Philadelphia chromosome-positive CML. - Data sources Databases [including MEDLINE (Ovid), EMBASE, Current Controlled Trials, ClinicalTrials.gov, the US Food and Drug Administration website and the European Medicines Agency website] were searched from search end date of the last technology appraisal report on this topic in October 2002 to September 2011. - Review methods A systematic review of clinical effectiveness and cost-effectiveness studies; a review of surrogate relationships with survival; a review and critique of manufacturer submissions; and a model-based economic analysis. - Results Two clinical trials (dasatinib vs imatinib and nilotinib vs imatinib) were included in the effectiveness review. Survival was not significantly different for dasatinib or nilotinib compared with imatinib with the 24-month follow-up data available. The rates of complete cytogenetic response (CCyR) and major molecular response (MMR) were higher for patients receiving dasatinib than for those with imatinib for 12 months' follow-up (CCyR 83% vs 72%, p < 0.001; MMR 46% vs 28%, p < 0.0001). The rates of CCyR and MMR were higher for patients receiving nilotinib than for those receiving imatinib for 12 months' follow-up (CCyR 80% vs 65%, p < 0.001; MMR 44% vs 22%, p < 0.0001). An indirect comparison analysis showed no difference between dasatinib and nilotinib for CCyR or MMR rates for 12 months' follow-up (CCyR, odds ratio 1.09, 95% CI 0.61 to 1.92; MMR, odds ratio 1.28, 95% CI 0.77 to 2.16). There is observational association evidence from imatinib studies supporting the use of CCyR and MMR at 12 months as surrogates for overall all-cause survival and progression-free survival in patients with CML in chronic phase. In the cost-effectiveness modelling scenario, analyses were provided to reflect the extensive structural uncertainty and different approaches to estimating OS. First-line dasatinib is predicted to provide very poor value for money compared with first-line imatinib, with deterministic incremental cost-effectiveness ratios (ICERs) of between £256,000 and £450,000 per quality-adjusted life-year (QALY). Conversely, first-line nilotinib provided favourable ICERs at the willingness-to-pay threshold of £20,000-30,000 per QALY. - Limitations Immaturity of empirical trial data relative to life expectancy, forcing either reliance on surrogate relationships or cumulative survival/treatment duration assumptions. - Conclusions From the two trials available, dasatinib and nilotinib have a statistically significant advantage compared with imatinib as measured by MMR or CCyR. Taking into account the treatment pathways for patients with CML, i.e. assuming the use of second-line nilotinib, first-line nilotinib appears to be more cost-effective than first-line imatinib. Dasatinib was not cost-effective if decision thresholds of £20,000 per QALY or £30,000 per QALY were used, compared with imatinib and nilotinib. Uncertainty in the cost-effectiveness analysis would be substantially reduced with better and more UK-specific data on the incidence and cost of stem cell transplantation in patients with chronic CML. - Funding The Health Technology Assessment Programme of the National Institute for Health Research.
Resumo:
A method is presented to calculate economic optimum fungicide doses accounting for the risk-aversion of growers responding to variability in disease severity between crops. Simple dose-response and disease-yield loss functions are used to estimate net disease-related costs (fungicide cost, plus disease-induced yield loss) as a function of dose and untreated severity. With fairly general assumptions about the shapes of the probability distribution of disease severity and the other functions involved, we show that a choice of fungicide dose which minimises net costs on average across seasons results in occasional large net costs caused by inadequate control in high disease seasons. This may be unacceptable to a grower with limited capital. A risk-averse grower can choose to reduce the size and frequency of such losses by applying a higher dose as insurance. For example, a grower may decide to accept ‘high loss’ years one year in ten or one year in twenty (i.e. specifying a proportion of years in which disease severity and net costs will be above a specified level). Our analysis shows that taking into account disease severity variation and risk-aversion will usually increase the dose applied by an economically rational grower. The analysis is illustrated with data on septoria tritici leaf blotch of wheat caused by Mycosphaerella graminicola. Observations from untreated field plots at sites across England over three years were used to estimate the probability distribution of disease severities at mid-grain filling. In the absence of a fully reliable disease forecasting scheme, reducing the frequency of ‘high loss’ years requires substantially higher doses to be applied to all crops. Disease resistant cultivars reduce both the optimal dose at all levels of risk and the disease-related costs at all doses.
Resumo:
Background As financial constraints can be a barrier to accessing HIV antiretroviral therapy (ART), we argue for the removal of copayment requirements from HIV medications in South Australia. Methods Using a simple mathematical model informed by available behavioural and biological data and reflecting the HIV epidemiology in South Australia, we calculated the expected number of new HIV transmissions caused by persons who are not currently on ART compared with transmissions for people on ART. The extra financial investment required to cover the copayments to prevent an HIV infection was compared with the treatment costs saved due to averting HIV infections. Results It was estimated that one HIV infection is prevented per year for every 31.4 persons (median, 24.0–42.7 interquartile range (IQR)) who receive treatment. By considering the incremental change in costs and outcomes of a change in program from the current status quo, it would cost the health sector $17 860 per infection averted (median, $13 651–24 287 IQR) if ART is provided as a three-dose, three-drug combination without requirements for user-pay copayments. Conclusions The costs of removing copayment fees for ART are less than the costs of treating extra HIV infections that would result under current conditions. Removing the copayment requirement for HIV medication would be cost-effective from a governmental perspective.
Resumo:
Management of insecticide resistance.
Resumo:
A method was developed to evaluate crop disease predictive models for their economic and environmental benefits. Benefits were quantified as the value of a prediction measured by costs saved and fungicide dose saved. The value of prediction was defined as the net gain made by using predictions, measured as the difference between a scenario where predictions are available and used and a scenario without prediction. Comparable 'with' and 'without' scenarios were created with the use of risk levels. These risk levels were derived from a probability distribution fitted to observed disease severities. These distributions were used to calculate the probability that a certain disease induced economic loss was incurred. The method was exemplified by using it to evaluate a model developed for Mycosphaerella graminicola risk prediction. Based on the value of prediction, the tested model may have economic and environmental benefits to growers if used to guide treatment decisions on resistant cultivars. It is shown that the value of prediction measured by fungicide dose saved and costs saved is constant with the risk level. The model could also be used to evaluate similar crop disease predictive models.
Resumo:
It makes economic sense to use as little fungicide as possible on a crop. In many settings, it is common to apply less than the manufacturer's recommended dose. If sources of disease are scarce, or conditions are unsuitable for it to increase, the reduced control from a low dose may be adequate. In other cases, a big reduction in dose may cause little reduction in control, again permitting savings - especially for growers prepared to run a little risk. But the label recommendations for most fungicides state that to avoid resistance, a full dose must always be used. Are individual cost-savings therefore endangering everyone's access to an exceptionally useful tool? The emergence of fungicide resistance is evolution in action. In all cases, it involves the genetic replacement of the original susceptible population of the pathogen by a new population with genetically distinct biochemistry, which confers resistance. The resistant biochemistry originates in rare genetic mutations, so rare that initially the population is hardly altered. Replacement of susceptible forms by resistant ones happens because, with fungicide present, the resistant form multiplies more rapidly than the susceptible form. The key point to notice is that only the relative rates of multiplication of the resistant and susceptible types are involved in the evolution of resistance. The absolute rates are irrelevant.
Resumo:
The study was done to evaluate the cost-effectiveness of a national rotavirus vaccination programme in Brazilian children from the healthcare system perspective. A hypothetical annual birth-cohort was followed for a five-year period. Published and national administrative data were incorporated into a model to quantify the consequences of vaccination versus no vaccination. Main outcome measures included the reduction in disease burden, lives saved, and disability-adjusted life-years (DALYs) averted. A rotavirus vaccination programme in Brazil would prevent an estimated 1,804 deaths associated with gastroenteritis due to rotavirus, 91,127 hospitalizations, and 550,198 outpatient visits. Vaccination is likely to reduce 76% of the overall healthcare burden of rotavirus-associated gastroenteritis in Brazil. At a vaccine price of US$ 7-8 per dose, the cost-effectiveness ratio would be US$ 643 per DALY averted. Rotavirus vaccination can reduce the burden of gastroenteritis due to rotavirus at a reasonable cost-effectiveness ratio.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
É importante a busca por melhores rentabilidades para a cultura do trigo por meio de tecnologias que reduzam custos de produção e proporcionem sustentabilidade à agricultura brasileira. Assim, o objetivo deste trabalho foi avaliar a rentabilidade da cultura do trigo em sistema plantio direto, visando reduzir doses de nitrogênio em cobertura, pelo cultivo de adubos verdes anterior ao do trigo. O experimento foi realizado em Selvíria (MS), Brasil, no ano 2009/10. O delineamento utilizado foi o de blocos casualizados com 36 tratamentos, em parcelas subdividas, com quatro repetições. As parcelas foram formadas por seis tipos de adubos verdes (guandu BRS Mandarim, Crotalaria juncea, milheto BRS 1501, pousio e os consórcios milheto + guandu e milheto + crotalária), que forneceram palha para o plantio direto do trigo no inverno, após a cultura de arroz na safra de verão. As subparcelas foram formadas por seis doses de nitrogênio (0, 25, 50,75, 100 e 125 kg ha-1 de N) em uma aplicação em cobertura, ten-do como fonte a ureia. O trigo cultivado, após a semeadura dos adubos verdes na safra de inverno anterior, sem a aplicação de nitrogênio em cobertura e na dose 25 kg ha-1 de N, apresentou com maior frequência custos de produção superior à receita bruta. O custo de produção de trigo cultivado após os consórcios de milheto + guandu e milheto + crotalária na safra de inverno anterior, associado a doses de nitrogênio de 50 e 75 kg ha-1 de N, proporcionou maior lucratividade em relação aos demais adubos verdes avaliados.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also in terms of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Montserrat for the period 2010 - 2050, and by estimating the monetary value associated with this excess disease burden. The diseases initially considered in this report are variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrheal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1%, 2% and 4%, results show mean annual costs (morbidity and mortality) ranges of $0.61 million (in the B2 scenario, discounted at 4% annually) – $1 million (in the A2 scenario, discounted at 1% annually) for Montserrat. These costs are compared to adaptation cost scenarios involving increased direct spending on per capita health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health burdens in the period 2010-2050. The methodology and results suggest that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for Montserrat. Also the report highlights the need for this to be part of a coordinated regional response that avoids duplication in spending.
Resumo:
Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Saint Lucia for the period 2010 - 2050, and by estimating the non-market, statistical life-based costs associated with this excess disease burden. The diseases initially considered in this report are a variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrhoeal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1, 2, and 4%, results show mean annual costs (morbidity and mortality) ranges of $80.2 million (in the B2 scenario, discounted at 4% annually) -$182.4 million (in the A2 scenario, discounted at 1% annually) for St. Lucia.1 These costs are compared to adaptation cost scenarios involving direct and indirect interventions in health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health costs from 2010-2050. In this context indirect interventions target sectors other than healthcare (e.g. water supply). It is also important to highlight that interventions can target both the supply of health infrastructure (including health status and disease monitoring), and households. It is suggested that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for St Lucia. Also, the need for this to be part of a coordinated regional response that avoids duplication in spending is highlighted.