831 resultados para eco-plasticity
Resumo:
陆地样带是国际地圈——生物圈计划(IGBP)研究中最引入注目的创新之一。目前,国际上已经设立了15条陆地样带,研究内容涉及环境梯度分析、气候变化对植被初级生产力的影响及环境变化、土地利用等与植被变化的对应关系等。沿该陆地样带分布较广的关键种生理适应性等方面对影响其生理功能形态结构的研究较少,特别是茎、叶等组织功能研究较少。 中国东北样带(NECT)是全球陆地样带的重要组成部分,多年来已开展了大量深入系统的研究工作,已成为我国生态学、地学等学科的重要研究平台。本研究以中国东北样带中西段广泛分布的重要关键种——羊草(Leymus chinensis)为研究对象,分析了羊草茎、叶显微结构的生态可塑性及其与水分利用效率的关系,进而阐述了羊草适应不同生境条件,特别是适应水分变化的机制,为揭示羊草及其种群、群落乃至以羊草为优势种或建群种的草地生态系统在全球变化背景下的发展趋势提供理论依据。 基于2001年7~8月第3次中国东北样带考察资料,采用高精度Olympus显微镜及C同位素分析技术(δ13C判别值),结合在野外取样过程中测定的样地土壤含水量和海拔高度,以及近十年各样地年降水量和年均温度气象资料,分析了羊草茎、叶显微结构和水分利用变化与环境因子的关系,以及以羊草为建群种或共建种的无牧和放牧样地群落生物量、物种多样性和植物功能型组成变化与环境因子的关系。 结果表明:羊草叶片表面及内部主要显微结构特征参数各样地间有不同程度的差异,其中气孔密度与降水量呈线性正相关。代表气孔开张程度的气孔长度和宽度变化与土壤含水量呈线性相关。叶表面角质层厚度与海拔高度变化关系较大,并以上表面角质层厚度变化最为明显,主要受海拔高度升高引起的紫外线照射增强的影响。运动细胞带宽度占叶面积比虽然与各环境因子关系不很密切,但温度变化的影响较突出,这一显微结构调整与气孔变化构成干旱——高温调节机制。叶片表面毛茸的变化也是非常显著的,但与各环境因子关系密切程度均不大,可以肯定的是在土壤水分状况较好的生境下羊草叶片表面毛茸密度及长度明显增加,而一些干旱生境中常表现为毛茸较少、较短,个别样地基本没有发育较好的毛茸。总体上看,羊草叶片对干旱化的形态结构调整以气孔密度和开张程度的变化最大,是羊草叶片调节水分利用效率的重要适应性生态可塑性调整。 与叶片相比,羊草茎横切面结构特征的变化与各环境因子关系的显著性不是很强,但各样地间的差异是比较显著的,许多结构调整可能与土壤养分条件的变化有一定关系,如茎秆粗度变化、基本薄壁组织厚度和中央空腔(髓腔)直径的变化等,但本研究未能涉及这方面内容,有待于进一步研究。 羊草水分利用效率与降水量和土壤含水量呈显著的负相关关系,即随降水量和土壤含水量增大羊草水分利用效率明显降低,蒸腾耗水增大,这一生理变化与显微结构的调整关系密切,特别是气孔密度与气孔宽度在水分较差生境中明显减小,从而有利于适应干旱环境,减少耗水量。表现比较突出的是非地带性林西样地,其降水量处于10个样地的中等偏低水平,但其δ13C判别值较低,达-26.063‰,与降水量较大的长岭、双辽样地几乎相当,并比相邻的林东和克旗样地明显低,其气孔密度、开张程度及叶脉后生导管直径均较高(大),但其土壤水分状况是最好的样地之一,尽管取样时不幸遇到雨天,但从其群落类型——羊草杂类草草甸,并伴生许多中、湿生种类上看,其生境的湿润程度是毋庸置疑的。这一非地带性样地中羊草结构的变化从另一侧面反映了羊草显微结构调整对水分环境的适应。δ13C判别值是一个非常敏感的参数,在分析植物水分利用效率及其相关领域的研究中应深入利用。 群落植物功能群组成与环境因子及群落初级生产力关系研究结果表明,丛生禾草生长型功能群、旱生和中旱生植物水分生态类型功能群具有明显的地带性变化规律,并与群落生物量变化关系密切,变异性较低,占群落生物量比例较大,可考虑作为植物功能型组合对无牧样地植被变化进行评估和预测。在放牧影响下,C4植物光合类型功能群呈现明显的地带性变化,并在群落中所起的作用明显增强,亦可考虑作为评估和预测植被变化的植物功能型组合。无牧样地与放牧样地研究结果均表明,按Raunkiaer划分的地面芽、地下芽、地上芽和一年生植物生活型功能群,其地带性变化不明显,或变异率高,或占群落生物量比例小,不宜作植物功能群组合对植被变化进行评估和预测。
Resumo:
The main objective was to compare the environmental impacts of a building undergoing refurbishment both before and after the refurbishment and to assist in the design of the refurbishment with what is learned.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
Two new landscape projects for Victoria's City of Moreland explore an intriguing fusion of indigenous and multicultural community qualities imbued with the romantic sensibilities of the collaborative design team.
Resumo:
Building integrated living systems (BILS), such as green roofs and living walls, could mitigate many of the challenges presented by climate change and biodiversity protection. However, few if any such systems have been constructed, and current tools for evaluating them are limited, especially under Australian subtropical conditions. BILS are difficult to assess, because living systems interact with complex, changing and site-specific social and environmental conditions. Our past research in design for eco-services has confirmed the need for better means of assessing the ecological values of BILS - let alone better models for assessing their thermal and hydrological performance. To address this problem, a research project is being developed jointly by researchers at the Central Queensland University (CQ University) and the Queensland University of Technology (QUT), along with industry collaborators. A mathematical model under development at CQ University will be applied and tested to determine its potential for predicting their complex, dynamic behaviour in different contexts. However, the paper focuses on the work at QUT. The QUT school of design is generating designs for living walls and roofs that provide a range of ecosystem goods and services, or ‘eco-services’, for a variety of micro-climates and functional contexts. The research at QUT aims to develop appropriate designs, virtual prototypes and quantitative methods for assessing the potential multiple benefits of BILS in subtropical climates. It is anticipated that the CQ University model for predicting thermal behaviour of living systems will provide a platform for the integration of ecological criteria and indicators. QUT will also explore means to predict and measure the value of eco-services provided by the systems, which is still largely uncharted territory. This research is ultimately intended to facilitate the eco-retrofitting of cities to increase natural capital and urban resource security - an essential component of sustainability. The talk will present the latest range of multifunctional, eco-productive living walls, roofs and urban space frames and their eco-services.
Resumo:
Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.
Resumo:
As all environmental problems are caused by human systems of design, sustainability can be seen as a design problem. Given the massive energy and material flows through the built environment, sustainability simply cannot be achieved without the re-design of our urban areas. ‘Eco-retrofitting’, as used here, means modifying buildings and/or urban areas to create net positive social and environmental impacts – both on site and off site. While this has probably not been achieved anywhere as yet, myriad but untapped eco-solutions are already available which could be up-scaled to the urban level. It is now well established that eco-retrofitting buildings and cities with appropriate design technology can pay for itself through lower health costs, productivity increases and resource savings. Good design would also mean happier human and ecological communities at a much lower cost over time. In fact, good design could increase life quality and the life support services of nature while creating sustainable‘economic’growth. The impediments are largely institutional and intellectual, which can be encapsulated in the term ‘managerial’. There are, however, also systems design solutions to the managerial obstacles that seem to be stalling the transition to sustainable systems designs. Given the sustainability imperative, then, why is the adoption of better management systems so slow? The oral presentation will show examples of ways in which built environment design can create environments that not only reduce the ongoing damage of past design, but could theoretically generate net positive social and ecological outcomes over their life cycle. These illustrations show that eco-retrofitting could cost society less than doing nothing - especially given the ongoing renovations of buildings - but for managerial hurdles. The paper outlines on how traditional managerial approaches stand in the way of ‘design for ecosystem services’, and list some management solutions that have long been identified, but are not yet widely adopted. Given the pervasive nature of these impediments and their alternatives, they are presented by way of examples. A sampling of eco-retrofitting solutions are also listed to show that ecoretrofitting is a win-win-win solution that stands ready to be implemented by people having management skills and/or positions of influence.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used and formed the back bone or urban management systems. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This research paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place of residents, workers and visitors. The research paper reports and introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
Literature on Ubiquitous Eco Cities highlights three key issues to be carefully considered while planning, developing and managing such cities: ‘technology, infrastructure and management’. This paper discusses the recent developments in telecommunication networks, trends in technology convergence and both of their implications on the management of Ubiquitous Eco Cities. The paper also introduces recent approaches on urban management, such as intelligent urban management systems, that are potentially suitable for Ubiquitous Eco Cities.
Resumo:
A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
This paper explores a method of comparative analysis and classification of data through perceived design affordances. Included is discussion about the musical potential of data forms that are derived through eco-structural analysis of musical features inherent in audio recordings of natural sounds. A system of classification of these forms is proposed based on their structural contours. The classifications include four primitive types; steady, iterative, unstable and impulse. The classification extends previous taxonomies used to describe the gestural morphology of sound. The methods presented are used to provide compositional support for eco-structuralism.
Resumo:
This article explores the aesthetic implications of eco- structuralism. Eco-structuralism is a method of music composition that utilises the sonic features of natural sounds as structural elements in new compositions. This paper places eco-structuralism within an aesthetic and analytical framework. It explores views of aesthetics and nature and discusses how eco-structuralism is positioned in relation to these ideas and considers some aesthetic opportunities of the eco-structuralist process.
Resumo:
There is an urgent need to assess the vulnerability of eco-environmental health to climate change. This paper aims to provide an overview of current research, to identify knowledge gaps, and to propose future research needs in this challenging area. Evidence shows that climate change is affecting and will, in the future, have more (mostly adverse) impacts on ecosystems. Ecosystem degradation, particularly the decline of the life support systems, will undoubtedly affect human health and wellbeing. Therefore, it is important to develop a framework to assess the vulnerability of eco-environmental health to climate change, and to identify appropriate adaptation strategies to minimize the impact of climate change.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision-making system and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities via wired and wireless networks. Particularly, technology convergence creates new ways in which information and telecommunication technologies are used and formed the backbone of urban management. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices and provides new opportunities in the management of Ubiquitous Eco Cities. This chapter discusses developments in telecommunication infrastructure and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities