994 resultados para earth-moon transfer
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lunar sphere of influence, whose radius is some 66,300 km, has regions of stable orbits around the Moon and also regions that contain trajectories which, after spending some time around the Moon, escape and are later recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, and the escape and capture trajectories through the L I and L2 in plots of the eccentricity versus the semi-major axis as a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a great number of future missions. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mode of access: Internet.
Resumo:
The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. In this work, we introduce a new low-cost orbital transfer strategy that opportunistically combine chaotic and swing-by transfers to get a very efficient strategy that can be used for servicing mission on astronomical mission placed on Lagrangian points L4 or L5. This strategy is not only efficient with respect to thrust requirement, but also its time transfer is comparable to others known transfer techniques based on time optimization. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
An alternative transfer strategy to send spacecrafts to stable orbits around the Lagrangian equilibrium points L4 and L5 based in trajectories derived from the periodic orbits around LI is presented in this work. The trajectories derived, called Trajectories G, are described and studied in terms of the initial generation requirements and their energy variations relative to the Earth through the passage by the lunar sphere of influence. Missions for insertion of spacecrafts in elliptic orbits around L4 and L5 are analysed considering the Restricted Three-Body Problem Earth- Moon-particle and the results are discussed starting from the thrust, time of flight and energy variation relative to the Earth. Copyright© (2012) by the International Astronautical Federation.
Resumo:
In this work we study the dynamics of fictitious satellites of the Earth. In the first part we do not consider the effect of the Moon and study the dynamics in the restrict three-body model, i.e., a massless satellite under the effect of the gravitational force of an oblate Earth and that of the Sun. We show that a satellite starting with an almost circular orbit suffers very large variations of eccentricity, depending on the initial inclination of the orbit with respect to the reference plane. As the eccentricity may be driven to very large values (approximate to0.9) mutual collisions between satellites or collisions with the planet may occur. In the second part, we include the gravitational effect of the Moon. In this case, we find two regions with large variations of eccentricity due to the presence of the Moon. Consequently, in both scenarios, we find some large regions of the phase space where the long-term stability of some fictitious Earth's satellites is not possible. (C) 2001 Elsevier B.V. Ltd. All rights reserved.