1000 resultados para early universe
Resumo:
This thesis deals with some aspects of the Physics of the early universe, like phase transitions, bubble nucleations and premodial density perturbations which lead to the formation structures in the universe. Quantum aspects of the gravitational interaction play an essential role in retical high-energy physics. The questions of the quantum gravity are naturally connected with early universe and Grand Unification Theories. In spite of numerous efforts, the various problems of quantum gravity remain still unsolved. In this condition, the consideration of different quantum gravity models is an inevitable stage to study the quantum aspects of gravitational interaction. The important role of gravitationally coupled scalar field in the physics of the early universe is discussed in this thesis. The study shows that the scalar-gravitational coupling and the scalar curvature did play a crucial role in determining the nature of phase transitions that took place in the early universe. The key idea in studying the formation structure in the universe is that of gravitational instability.
Resumo:
The thesis begins with a review of basic elements of general theory of relativity (GTR) which forms the basis for the theoretical interpretation of the observations in cosmology. The first chapter also discusses the standard model in cosmology, namely the Friedmann model, its predictions and problems. We have also made a brief discussion on fractals and inflation of the early universe in the first chapter. In the second chapter we discuss the formulation of a new approach to cosmology namely a stochastic approach. In this model, the dynam ics of the early universe is described by a set of non-deterministic, Langevin type equations and we derive the solutions using the Fokker—Planck formalism. Here we demonstrate how the problems with the standard model, can be eliminated by introducing the idea of stochastic fluctuations in the early universe. Many recent observations indicate that the present universe may be approximated by a many component fluid and we assume that only the total energy density is conserved. This, in turn, leads to energy transfer between different components of the cosmic fluid and fluctuations in such energy transfer can certainly induce fluctuations in the mean to factor in the equation of state p = wp, resulting in a fluctuating expansion rate for the universe. The third chapter discusses the stochastic evolution of the cosmological parameters in the early universe, using the new approach. The penultimate chapter is about the refinements to be made in the present model, by means of a new deterministic model The concluding chapter presents a discussion on other problems with the conventional cosmology, like fractal correlation of galactic distribution. The author attempts an explanation for this problem using the stochastic approach.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Resumo:
We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.
Resumo:
During the epoch when the first collapsed structures formed (6<z<50) our Universe went through an extended period of changes. Some of the radiation from the first stars and accreting black holes in those structures escaped and changed the state of the Intergalactic Medium (IGM). The era of this global phase change in which the state of the IGM was transformed from cold and neutral to warm and ionized, is called the Epoch of Reionization.In this thesis we focus on numerical methods to calculate the effects of this escaping radiation. We start by considering the performance of the cosmological radiative transfer code C2-Ray. We find that although this code efficiently and accurately solves for the changes in the ionized fractions, it can yield inaccurate results for the temperature changes. We introduce two new elements to improve the code. The first element, an adaptive time step algorithm, quickly determines an optimal time step by only considering the computational cells relevant for this determination. The second element, asynchronous evolution, allows different cells to evolve with different time steps. An important constituent of methods to calculate the effects of ionizing radiation is the transport of photons through the computational domain or ``ray-tracing''. We devise a novel ray tracing method called PYRAMID which uses a new geometry - the pyramidal geometry. This geometry shares properties with both the standard Cartesian and spherical geometries. This makes it on the one hand easy to use in conjunction with a Cartesian grid and on the other hand ideally suited to trace radiation from a radially emitting source. A time-dependent photoionization calculation not only requires tracing the path of photons but also solving the coupled set of photoionization and thermal equations. Several different solvers for these equations are in use in cosmological radiative transfer codes. We conduct a detailed and quantitative comparison of four different standard solvers in which we evaluate how their accuracy depends on the choice of the time step. This comparison shows that their performance can be characterized by two simple parameters and that the C2-Ray generally performs best.
Resumo:
In this thesis, we explore constraints which can be put on the primordial power spectrum of curvature perturbations beyond the scales probed by anisotropies of the cosmic microwave background and galaxy surveys. We exploit present and future measurements of CMB spectral distortions, and their synergy with CMB anisotropies, as well existing and future upper limits on the stochastic background of gravitational waves. We derive for the first time phenomenological templates that fit small-scale bumps in the primordial power spectrum generated in multi-field models of inflation. By using such templates, we study for the first time imprints of primordial peaks on anisotropies and spectral distortions of the cosmic microwave background and we investigate their contribution to the stochastic background of gravitational waves. Through a Monte Carlo Markov Chain analysis we infer for the first time the constraints on the amplitude, the width and the location of such bumps using Planck and FIRAS data. We also forecast how a future spectrometer like PIXIE could improve FIRAS boundaries. The results derived in this thesis have implications for the possibility of primordial black holes from inflation.
Resumo:
Equations of state for the early universe including realistic interactions between constituents are formulated. Under certain hypotheses, these equations are able to generate an inflationary regime prior to the period of the nucleosynthesis. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of a curvature parameter. equal to 0 or + 1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion. All the results are valid only for a matter-antimatter symmetric universe.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We point out that in the early universe, for temperatures in the approximate interval 150-80 MeV (after the quark-gluon plasma), pions carried a large share of the entropy and supported the largest inhomogeneities. Its thermal conductivity (previously calculated) allows the characterization of entropy production due to equilibration (damping) of thermal fluctuations. Simple model distributions of thermal fluctuations are considered and the associated entropy production evaluated.
Resumo:
Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields similar to mu G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) similar to 10 mu G over a comoving similar to 1 pc region are predicted at redshift z similar to 10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs similar to 10(-2) mu G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z similar to 10. In the collapse to a galaxy (comoving size similar to 30 kpc) at z similar to 10, the fields are amplified to similar to 10 mu G. This indicates that the MFs created immediately after the QHPT (10(-4) s), predicted by the fluctuation-dissipation theorem, could be the origin of the similar to mu G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.
Resumo:
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.