996 resultados para dynamic ride-sharing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of these presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agile ridesharing aims to utilise the capability of social networks and mobile phones to facilitate people to share vehicles and travel in real time. However the application of social networking technologies in local communities to address issues of personal transport faces significant design challenges. In this paper we describe an iterative design-based approach to exploring this problem and discuss findings from the use of an early prototype. The findings focus upon interaction, privacy and profiling. Our early results suggest that explicitly entering information such as ride data and personal profile data into formal fields for explicit computation of matches, as is done in many systems, may not be the best strategy. It might be preferable to support informal communication and negotiation with text search techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of suspension parameters and driving conditions on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer are investigated in this study. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspensions is formulated based on fluid mechanics and thermodynamics and validated through test results. The effects of road surface conditions, driving speeds, air line inside diameter and connector inside diameter on dynamic load-sharing capability of the semi-trailer were analyzed in terms of load-sharing criteria. Simulation results indicate that, when larger air lines and connectors are employed, the DLSC (Dynamic Load-Sharing Coefficient) optimization ratio reaches its peak value when the road roughness is medium. The optimization ratio fluctuates in a complex manner as driving speed increases. The results also indicate that if the air line inside diameter is always assumed to be larger than the connector inside diameter, the influence of air line inside diameter on load-sharing is more significant than that of the connector inside diameter. The proposed approach can be used for further study of the influence of additional factors (such as vehicle load, static absolute air pressure and static height of air spring) on load-sharing and the control methods for multi-axle air suspensions with longitudinal air line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise of the peer economy poses complex new regulatory challenges for policy-makers. The peer economy, typified by services like Uber and AirBnB, promises substantial productivity gains through the more efficient use of existing resources and a marked reduction in regulatory overheads. These services are rapidly disrupting existing established markets, but the regulatory trade-offs they present are difficult to evaluate. In this paper, we examine the peer economy through the context of ride-sharing and the ongoing struggle over regulatory legitimacy between the taxi industry and new entrants Uber and Lyft. We first sketch the outlines of ride-sharing as a complex regulatory problem, showing how questions of efficiency are necessarily bound up in questions about levels of service, controls over pricing, and different approaches to setting, upholding, and enforcing standards. We outline the need for data-driven policy to understand the way that algorithmic systems work and what effects these might have in the medium to long term on measures of service quality, safety, labour relations, and equality. Finally, we discuss how the competition for legitimacy is not primarily being fought on utilitarian grounds, but is instead carried out within the context of a heated ideological battle between different conceptions of the role of the state and private firms as regulators. We ultimately argue that the key to understanding these regulatory challenges is to develop better conceptual models of the governance of complex systems by private actors and the available methods the state has of influencing their actions. These struggles are not, as is often thought, struggles between regulated and unregulated systems. The key to understanding these regulatory challenges is to better understand the important regulatory work carried out by powerful, centralised private firms – both the incumbents of existing markets and the disruptive network operators in the peer-economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise of the peer economy poses complex new regulatory challenges for policy-makers. The peer economy, typified by services like Uber and AirBnB, promises substantial productivity gains through the more efficient use of existing resources and a marked reduction in regulatory overheads. These services are rapidly disrupting existing established markets, but the regulatory trade-offs they present are difficult to evaluate. In this paper, we examine the peer economy through the context of ride-sharing and the ongoing struggle over regulatory legitimacy between the taxi industry and new entrants Uber and Lyft. We first sketch the outlines of ride-sharing as a complex regulatory problem, showing how questions of efficiency are necessarily bound up in questions about levels of service, controls over pricing, and different approaches to setting, upholding, and enforcing standards. We outline the need for data-driven policy to understand the way that algorithmic systems work and what effects these might have in the medium to long term on measures of service quality, safety, labour relations, and equality. Finally, we discuss how the competition for legitimacy is not primarily being fought on utilitarian grounds, but is instead carried out within the context of a heated ideological battle between different conceptions of the role of the state and private firms as regulators. We ultimately argue that the key to understanding these regulatory challenges is to develop better conceptual models of the governance of complex systems by private actors and the available methods the state has of influencing their actions. These struggles are not, as is often thought, struggles between regulated and unregulated systems. The key to understanding these regulatory challenges is to better understand the important regulatory work carried out by powerful, centralised private firms – both the incumbents of existing markets and the disruptive network operators in the peer-economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This magazine article examines the challenges of digital disruption and the way the struggle for legitimacy is playing out in mainstream and social media. Using ride-sharing as a case study, our team at the QUT Digital media research centre seeks to develop the tools policy-makers need to make evidence-based policy decisions in response to digital disruption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the solution to a model of consumption smoothing using financing under non-commitment and savings. We show that, under certain conditions, these two different instruments complement each other perfectly. If the rate of time preference is equal to the interest rate on savings, perfect smoothing can be achieved in finite time. We also show that, when random revenues are generated by periodic investments in capital through a concave production function, the level of smoothing achieved through financial contracts can influence the productive investment efficiency. As long as financial contracts cannot achieve perfect smoothing, productive investment will be used as a complementary smoothing device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many major cities, fixed route transit systems such as bus and rail serve millions of trips per day. These systems have people collect at common locations (the station or stop), and board at common times (for example according to a predetermined schedule or headway). By using common service locations and times, these modes can consolidate many trips that have similar origins and destinations or overlapping routes. However, the routes are not sensitive to changing travel patterns, and have no way of identifying which trips are going unserved, or are poorly served, by the existing routes. On the opposite end of the spectrum, personal modes of transportation, such as a private vehicle or taxi, offer service to and from the exact origin and destination of a rider, at close to exactly the time they desire to travel. Despite the apparent increased convenience to users, the presence of a large number of small vehicles results in a disorganized, and potentially congested road network during high demand periods. The focus of the research presented in this paper is to develop a system that possesses both the on-demand nature of a personal mode, with the efficiency of shared modes. In this system, users submit their request for travel, but are asked to make small compromises in their origin and destination location by walking to a nearby meeting point, as well as slightly modifying their time of travel, in order to accommodate other passengers. Because the origin and destination location of the request can be adjusted, this is a more general case of the Dial-a-Ride problem with time windows. The solution methodology uses a graph clustering algorithm coupled with a greedy insertion technique. A case study is presented using actual requests for taxi trips in Washington DC, and shows a significant decrease in the number of vehicles required to serve the demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing participation is a key challenge for the viability of sustainability initiatives, many of which require enactment at a local community level in order to be effective. This paper undertakes a review of technology assisted carpooling in order to understand the challenge of designing participation and consider how mobile social software and interface design can be brought to bear. It was found that while persuasive technology and social networking approaches have roles to play, critical factors in the design of carpooling are convenience, ease of use and fit with contingent circumstances, all of which require a use-centred approach to designing a technological system and building participation. Moreover, the reach of technology platform-based global approaches may be limited if they do not cater to local needs. An approach that focuses on iteratively designing technology to support and grow mobile social ridesharing networks in particular locales is proposed. The paper contributes an understanding of HCI approaches in the context of other designing participation approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC), peak dynamic wheel force (PDWF) and dynamic impact force (DIF) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of the presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.