947 resultados para dynamic parameters identification
Resumo:
In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.
Resumo:
Evolutionary algorithms are suitable to solve damage identification problems in a multi-objective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multi-objective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.
Resumo:
This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. The quadrature axis parameters are obtained with a rejection under an arbitrary reference, reducing the present difficulties.
Resumo:
At present, photovoltaic energy is one of the most important renewable energy sources. The demand for solar panels has been continuously growing, both in the industrial electric sector and in the private sector. In both cases the analysis of the solar panel efficiency is extremely important in order to maximize the energy production. In order to have a more efficient photovoltaic system, the most accurate understanding of this system is required. However, in most of the cases the only information available in this matter is reduced, the experimental testing of the photovoltaic device being out of consideration, normally for budget reasons. Several methods, normally based on an equivalent circuit model, have been developed to extract the I-V curve of a photovoltaic device from the small amount of data provided by the manufacturer. The aim of this paper is to present a fast, easy, and accurate analytical method, developed to calculate the equivalent circuit parameters of a solar panel from the only data that manufacturers usually provide. The calculated circuit accurately reproduces the solar panel behavior, that is, the I-V curve. This fact being extremely important for practical reasons such as selecting the best solar panel in the market for a particular purpose, or maximize the energy extraction with MPPT (Maximum Peak Power Tracking) methods.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.
Resumo:
This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I- V and the P- V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I- V and the P- V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC-DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system. © 2015 Elsevier Ltd.
Resumo:
This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I–V and the P–V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I–V and the P–V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC–DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
En esta tesis se propone un nuevo modelo de carga para caracterizar los saltos de personas sobre estructuras y se estudia la influencia de las personas en las propiedades dinámicas de la estructura. En el estudio del comportamiento estructural de construcciones como gimnasios, salas de baile, estadios, auditorios o pasarelas peatonales sometidas a cargas producidas por un gran número de personas, se deben tener en cuenta las fuerzas dinámicas, lo cual implica el uso de modelos de cálculo más complejos y criterios de dimensionamiento con nuevos parámetros. Por ello, es necesario determinar a qué cargas van a estar sometidas este tipo de estructuras y cómo van a cambiar cuando se encuentren ocupadas por personas. En la primera parte del trabajo se presenta el problema de considerar las fuerzas dinámicas en el análisis de estructuras. Se indican los factores que influyeron en el interés por este tipo de estudios. Se exponen los objetivos de la tesis y se propone la metodología para conseguirlos. También en esta primera parte se describe el estado del arte. Se explican los modelos existentes de carga generada por saltos de personas y se hace un repaso de los principales autores y estudios sobre este tema. Por último se exponen algunas ideas sobre las modificaciones dinámicas que provoca la presencia de las personas en las estructuras. En la segunda parte de la tesis se explica el modelo de carga de saltos propuesta en este trabajo, donde se incluye una campaña de ensayos con saltos sobre una placa de carga. Se describen las estructuras de ensayo, un gimnasio y una losa que cubre un aljibe. Se detalla la identificación de las propiedades dinámicas de las estructuras, describiendo los ensayos correspondientes y los resultados de un Análisis Operacional Modal. Por último se presenta el modelo de elementos finitos de la estructura elegida para los ensayos. En la tercera y última parte del trabajo se comprueba la validez de los modelos de carga estudiados mediante la realización de ensayos dinámicos con personas saltando y la posterior comparación de los resultados experimentales con las simulaciones numéricas. Como último resultado se estudia la influencia de las personas en las propiedades dinámicas de la estructura. Para ello se utilizan los datos obtenidos mediante un ensayo con personas pasivas. ABSTRACT In this thesis, a new load model is proposed to characterize people jumping on structures and the influence of people in the dynamic properties of the structure is studied. In the study of the structural behavior of buildings such as gymnasiums, dance halls, stadiums, auditoriums or footbridges subjected to loads generated by crowd, dynamic forces must take into account, which involves the use of more complex calculation models and dimensioning criteria with new parameters. Therefore, it is necessary to determine these dynamic loads and how structures will change when they are occupied by people. In the first part of the work the problem of considering the dynamic forces in the analysis of structures is presented. The factors that influence on the interest in this type of study are indicated. The objectives of the thesis are presented and also the proposed methodology in order to achieve them. In this first part the state of the art is described. Existing jumping load models are explained and a review of the main authors and studies on this subject is done. Finally some ideas about the dynamic changes caused by the presence of people in the structures are exposed. In the second part of the thesis the proposed jumping load model is explained, including jump tests on a force plate. Test structures, a gym and a concrete slab are described. Dynamic properties identification of the test structures is detailed with the corresponding tests and Operational Modal Analysis results. Finally, a finite element model of the structure chosen for the tests is presented. In the third part of the work, the studied jump load models are validated by performing dynamic testing with people jumping and the subsequent comparison of experimental results with numerical simulations. As a last result, the influence of people on the dynamic properties of the structure is checked. For this purpose, obtained data from a test with passive people are used.
Resumo:
Dynamic scanning, identification, and reconfiguration capabilities can facilitate firms' strategic change toward sustainability and higher competitive advantage in an evolving market environment.
Resumo:
The primary purpose of this thesis was to design and develop a prototype e-commerce system where dynamic parameters are included in the decision-making process and execution of an online transaction. The system developed and implemented takes into account previous usage history, priority and associated engineering capabilities. The system was developed using three-tiered client server architecture. The interface was the Internet browser. The middle tiered web server was implemented using Active Server Pages, which form a link between the client system and other servers. A relational database management system formed the data component of the three-tiered architecture. It includes a capability for data warehousing which extracts needed information from the stored data of the customers as well as their orders. The system organizes and analyzes the data that is generated during a transaction to formulate a client's behavior model during and after a transaction. This is used for making decisions like pricing, order rescheduling during a client's forthcoming transaction. The system helps among other things to bring about predictability to a transaction execution process, which could be highly desirable in the current competitive scenario.
Resumo:
This paper describes the manufacture of tubular ceramic membranes and the study of their performance in the demulsification of soybean oil/water emulsions. The membranes were made by iso-static pressing method and micro and macro structurally characterized by SEM, porosimetry by mercury intrusion and determination of apparent density and porosity. The microfiltration tests were realized on an experimental workbench, and fluid dynamic parameters, such as transmembrane flux and pressure were used to evaluate the process relative to the oil phase concentration (analysed by TOC measurements) in the permeate. The results showed that the membrane with pores` average diameter of 1.36 mu m achieved higher transmembrane flux than the membrane with pores` average diameter of 0.8 mu m. The volume of open pores (responsible for the permeation) was predominant in the total porosity, which was higher than 50% for all tested membranes. Concerning demulsification, the monolayer membranes were efficacious, as the rejection coefficient was higher than 99%.