854 resultados para dynamic modeling and simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the modeling and analysis of a voltage source converter (VSC) based back-to-back (BTB) HVDC link. The case study considers the response to changes in the active and reactive power and disturbance caused by single line to ground (SLG) fault. The controllers at each terminal are designed to inject a variable (magnitude and phase angle) sinusoidal, balanced set of voltages to regulate/control the active and reactive power. It is also possible to regulate the converter bus (AC) voltage by controlling the injected reactive power. The analysis is carried out using both d-q model (neglecting the harmonics in the output voltages of VSC) and three phase detailed model of VSC. While the eigenvalue analysis and controller design is based on the d-q model, the transient simulation considers both models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion of DNA (in the bulk solution) and the non-Newtonian effective fluid behavior are considered separately and self-consistently with the fluid motion satisfying the no-slip boundary condition on the surface of the confining geometry in the presence of channel pressure gradients. A different approach has been developed to model DNA in the micro-channel. In this study the DNA is assumed as an elastic chain with its characteristic Young's modulus, Poisson's ratio and density. The force which results from the fluid dynamic pressure, viscous forces and electromotive forces is applied to the elastic chain in a coupled manner. The velocity fields in the micro-channel are influenced by the transport properties. Simulations are carried out for the DNAs attached to the micro-fluidic wall. Numerical solutions based on a coupled multiphysics finite element scheme are presented. The modeling scheme is derived based on mass conservation including biomolecular mass, momentum balance including stress due to Coulomb force field and DNA-fluid interaction, and charge transport associated to DNA and other ionic complexes in the fluid. Variation in the velocity field for the non-Newtonian flow and the deformation of the DNA strand which results from the fluid-structure interaction are first studied considering a single DNA strand. Motion of the effective center of mass is analyzed considering various straight and coil geometries. Effects of DNA statistical parameters (geometry and spatial distribution of DNAs along the channel) on the effective flow behavior are analyzed. In particular, the dynamics of different DNA physical properties such as radius of gyration, end-to-end length etc. which are obtained from various different models (Kratky-Porod, Gaussian bead-spring etc.) are correlated to the nature of interaction and physical properties under the same background fluid environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed fluidization is of considerable interest in process engineering for improving fluidization quality. Quantitative understanding of the pulsed two-phase flow behaviors is very important for proper design and optimum operation of such contactors. The

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wheeled mobile robot (WMR) will move on an uneven terrain without slip if its torus-shaped wheels tilt in a lateral direction. An independent two degree-of-freedom (DOF) suspension is required to maintain contact with uneven terrain and for lateral tilting. This article deals with the modeling and simulation of a three-wheeled mobile robot with torus-shaped wheels and four novel two-DOF suspension mechanism concepts. Simulations are performed on an uneven terrain for three representative pathsa straight line, a circular, and an S'-shaped path. Simulations show that a novel concept using double four-bar mechanism performs better than the other three concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elderly and disabled people can be hugely benefited through the advancement of modern electronic devices, as those can help them to engage more fully with the world. However, existing design practices often isolate elderly or disabled users by considering them as users with special needs. This article presents a simulator that can reflect problems faced by elderly and disabled users while they use computer, television, and similar electronic devices. The simulator embodies both the internal state of an application and the perceptual, cognitive, and motor processes of its user. It can help interface designers to understand, visualize, and measure the effect of impairment on interaction with an interface. Initially a brief survey of different user modeling techniques is presented, and then the existing models are classified into different categories. In the context of existing modeling approaches the work on user modeling is presented for people with a wide range of abilities. A few applications of the simulator, which shows the predictions are accurate enough to make design choices and point out the implication and limitations of the work, are also discussed. © 2012 Copyright Taylor and Francis Group, LLC.