979 resultados para dynamic execution
Resumo:
Dynamic binary translation is the process of translating, modifying and rewriting executable (binary) code from one machine to another at run-time. This process of low-level re-engineering consists of a reverse engineering phase followed by a forward engineering phase. UQDBT, the University of Queensland Dynamic Binary Translator, is a machine-adaptable translator. Adaptability is provided through the specification of properties of machines and their instruction sets, allowing the support of different pairs of source and target machines. Most binary translators are closely bound to a pair of machines, making analyses and code hard to reuse. Like most virtual machines, UQDBT performs generic optimizations that apply to a variety of machines. Frequently executed code is translated to native code by the use of edge weight instrumentation, which makes UQDBT converge more quickly than systems based on instruction speculation. In this paper, we describe the architecture and run-time feedback optimizations performed by the UQDBT system, and provide results obtained in the x86 and SPARC® platforms.
Resumo:
On retrouve dans la nature un nombre impressionnant de matériaux semi-transparents tels le marbre, le jade ou la peau, ainsi que plusieurs liquides comme le lait ou les jus. Que ce soit pour le domaine cinématographique ou le divertissement interactif, l'intérêt d'obtenir une image de synthèse de ce type de matériau demeure toujours très important. Bien que plusieurs méthodes arrivent à simuler la diffusion de la lumière de manière convaincante a l'intérieur de matériaux semi-transparents, peu d'entre elles y arrivent de manière interactive. Ce mémoire présente une nouvelle méthode de diffusion de la lumière à l'intérieur d'objets semi-transparents hétérogènes en temps réel. Le coeur de la méthode repose sur une discrétisation du modèle géométrique sous forme de voxels, ceux-ci étant utilisés comme simplification du domaine de diffusion. Notre technique repose sur la résolution de l'équation de diffusion à l'aide de méthodes itératives permettant d'obtenir une simulation rapide et efficace. Notre méthode se démarque principalement par son exécution complètement dynamique ne nécessitant aucun pré-calcul et permettant une déformation complète de la géométrie.
Resumo:
Die protokollbasierte Medizin stellt einen interdisziplinären Brennpunkt der Informatik dar. Als besonderer Ausschnitt der medizinischen Teilgebiete erlaubt sie die relativ formale Spezifikation von Prozessen in den drei Bereichen der Prävention, Diagnose und Therapie.Letzterer wurde immer besonders fokussiert und gilt seit jeher im Rahmen klinischer Studien als Projektionsfläche für informationstechnologische Konzepte. Die Euphorie der frühen Jahre ernüchtert sich jedoch bei jeder Bilanz. Nur sehr wenige der unzählbaren Projekte haben ihre Routine in der alltäglichen Praxis gefunden. Die meisten Vorhaben sind an der Illusion der vollständigen Berechenbarkeit medizinischer Arbeitsabläufe gescheitert. Die traditionelle Sichtweise der klinischen Praxis beruht auf einer blockorientierten Vorstellung des Therapieausführungsprozesses. Sie entsteht durch seine Zerlegung in einzelne Therapiezweige, welche aus vordefinierten Blöcken zusammengesetzt sind. Diese können sequentiell oder parallel ausgeführt werden und sind selbst zusammengesetzt aus jeweils einer Menge von Elementen,welche die Aktivitäten der untersten Ebene darstellen. Das blockorientierte Aufbaumodell wird ergänzt durch ein regelorientiertes Ablaufmodell. Ein komplexes Regelwerk bestimmt Bedingungen für die zeitlichen und logischen Abhängigkeiten der Blöcke, deren Anordnung durch den Ausführungsprozeß gebildet wird. Die Modellierung der Therapieausführung steht zunächst vor der grundsätzlichen Frage, inwieweit die traditionelle Sichtweise für eine interne Repräsentation geeignet ist. Das übergeordnete Ziel besteht in der Integration der unterschiedlichen Ebenen der Therapiespezifikation. Dazu gehört nicht nur die strukturelle Komponente, sondern vorallem die Ablaufkomponente. Ein geeignetes Regelmodell ist erforderlich, welches den spezifischen Bedürfnissen der Therapieüberwachung gerecht wird. Die zentrale Aufgabe besteht darin, diese unterschiedlichen Ebenen zusammenzuführen. Eine sinnvolle Alternative zur traditionellen Sichtweise liefert das zustandsorientierte Modell des Therapieausführungsprozesses. Das zustandsorientierte Modell beruht auf der Sichtweise, daß der gesamte Therapieausführungsprozeß letztendlich eine lineare Folge von Zuständen beschreibt, wobei jeder Zustandsübergang durch ein Ereignis eingeleitet wird, an bestimmte Bedingungen geknüpft ist und bestimmte Aktionen auslösen kann. Die Parallelität des blockorientierten Modells tritt in den Hintergrund, denn die Menge der durchzuführenden Maßnahmen sind lediglich Eigenschaften der Zustände und keine strukturellen Elemente der Ablaufspezifikation. Zu jedem Zeitpunkt ist genau ein Zustand aktiv, und er repräsentiert eine von endlich vielen klinischen Situationen, mit all ihren spezifischen Aktivitäten und Ausführungsregeln. Die Vorteile des zustandsorientierten Modells liegen in der Integration. Die Grundstruktur verbindet die statische Darstellung der möglichen Phasenanordnungen mit der dynamischen Ausführung aktiver Regeln. Die ursprünglichen Inhalte des blockorientierten Modells werden als gewöhnliche Eigenschaften der Zustände reproduziert und stellen damit nur einen Spezialfall der zustandsbezogenen Sicht dar.Weitere Möglichkeiten für die Anreicherung der Zustände mit zusätzlichen Details sind denkbar wie sinnvoll. Die Grundstruktur bleibt bei jeder Erweiterung jedoch die gleiche. Es ergibt sich ein wiederverwendbares Grundgerüst,ein gemeinsamer Nenner für die Erfüllung der Überwachungsaufgabe.
Resumo:
This paper presents a conditional parallelization process for and-parallelism based on the notion of non-strict independence, a more relaxed notion than the traditional of strict independence. By using this notion, a parallelism annotator can extract more parallelism from programs. On the other hand, the intrinsic complexity of non-strict independence poses new challenges to this task. We report here on the implementation we have accomplished of an annotator for non-strict independence, capable of producing both static and dynamic execution graphs. This implementation, along with the also implemented independence checker and their integration in our system, have resulted what is, to the best of our knowledge, the first parallelizing compiler based on nonstrict independence which produces dynamic execution graphs. The paper also presents a preliminary assessment of the implemented tools, comparing them with the existing ones for strict independence, which shows encouraging results.
Resumo:
This thesis presents DCE, or Dynamic Conditional Execution, as an alternative to reduce the cost of mispredicted branches. The basic idea is to fetch all paths produced by a branch that obey certain restrictions regarding complexity and size. As a result, a smaller number of predictions is performed, and therefore, a lesser number of branches are mispredicted. DCE fetches through selected branches avoiding disruptions in the fetch flow when these branches are fetched. Both paths of selected branches are executed but only the correct path commits. In this thesis we propose an architecture to execute multiple paths of selected branches. Branches are selected based on the size and other conditions. Simple and complex branches can be dynamically predicated without requiring a special instruction set nor special compiler optimizations. Furthermore, a technique to reduce part of the overhead generated by the execution of multiple paths is proposed. The performance achieved reaches levels of up to 12% when comparing a Local predictor used in DCE against a Global predictor used in the reference machine. When both machines use a Local predictor, the speedup is increased by an average of 3-3.5%.
Resumo:
A Execução Condicional Dinâmica (DCE) é uma alternativa para redução dos custos relacionados a desvios previstos incorretamente. A idéia básica é buscar todos os fluxos produzidos por um desvio que obedecem algumas restrições relativas à complexidade e tamanho. Como conseqüência, um número menor de previsões é executado, e assim, um número mais baixo de desvios é incorretamente previsto. Contudo, tal como outras soluções multi-fluxo, o DCE requer uma estrutura de controle mais complexa. Na arquitetura DCE, é observado que várias réplicas da mesma instrução são despachadas para as unidades funcionais, bloqueando recursos que poderiam ser utilizados por outras instruções. Essas réplicas são geradas após o ponto de convergência dos diversos fluxos em execução e são necessárias para garantir a semântica correta entre instruções dependentes de dados. Além disso, o DCE continua produzindo réplicas até que o desvio que gerou os fluxos seja resolvido. Assim, uma seção completa do código pode ser replicado, reduzindo o desempenho. Uma alternativa natural para esse problema é reusar essas seções (ou traços) que são replicadas. O objetivo desse trabalho é analisar e avaliar a efetividade do reuso de valores na arquitetura DCE. Como será apresentado, o princípio do reuso, em diferentes granularidades, pode reduzir efetivamente o problema das réplicas e levar a aumentos de desempenho.
Resumo:
center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.
Resumo:
Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Users of wireless devices increasingly demand access to multimedia content with speci c quality of service requirements. Users might tolerate di erent levels of service, or could be satis ed with di erent quality combinations choices. However, multimedia processing introduces heavy resource requirements on the client side. Our work tries to address the growing demand on resources and performance requirements, by allowing wireless nodes to cooperate with each other to meet resource allocation requests and handle stringent constraints, opportunistically taking advantage of the local ad-hoc network that is created spontaneously, as nodes move in range of each other, forming a temporary coalition for service execution. Coalition formation is necessary when a single node cannot execute a speci c service, but it may also be bene cial when groups perform more e ciently when compared to a single s node performance.
Resumo:
This paper proposes a dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) residual capacity allocated but unused when jobs complete in less than their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers used to schedule best-effort jobs. The effectiveness of the proposed approach in reducing the mean tardiness of periodic jobs is demonstrated through extensive simulations. The achieved results become even more significant when tasks’ computation times have a large variance.
Resumo:
Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Most of today’s systems, especially when related to the Web or to multi-agent systems, are not standalone or independent, but are part of a greater ecosystem, where they need to interact with other entities, react to complex changes in the environment, and act both over its own knowledge base and on the external environment itself. Moreover, these systems are clearly not static, but are constantly evolving due to the execution of self updates or external actions. Whenever actions and updates are possible, the need to ensure properties regarding the outcome of performing such actions emerges. Originally purposed in the context of databases, transactions solve this problem by guaranteeing atomicity, consistency, isolation and durability of a special set of actions. However, current transaction solutions fail to guarantee such properties in dynamic environments, since they cannot combine transaction execution with reactive features, or with the execution of actions over domains that the system does not completely control (thus making rolling back a non-viable proposition). In this thesis, we investigate what and how transaction properties can be ensured over these dynamic environments. To achieve this goal, we provide logic-based solutions, based on Transaction Logic, to precisely model and execute transactions in such environments, and where knowledge bases can be defined by arbitrary logic theories.