941 resultados para dynamic effect
Resumo:
The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to non-ballast track solution in some cases. A considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. The objective of this work is to develop the most adequate and efficient models for calculation of dynamic traffic load effects on railways track infrastructure, and then evaluate the dynamic effect on the ballast track settlement, using a ballast track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. The calculations are based on dynamic finite element models with direct time integration, contact between wheel and rail and interaction with railway cars. A initial irregularity profile is used in the prediction model. The track settlement law is considered to be a function of number of loading cycles and the magnitude of the loading, which represents the long-term behavior of ballast settlement. The results obtained include the track irregularity growth and the contact force in the final interaction of numerical simulation
Resumo:
The dynamic interaction of vehicles and bridges results in live loads being induced into bridges that are greater than the vehicle’s static weight. To limit this dynamic effect, the Iowa Department of Transportation (DOT) currently requires that permitted trucks slow to five miles per hour and span the roadway centerline when crossing bridges. However, this practice has other negative consequences such as the potential for crashes, impracticality for bridges with high traffic volumes, and higher fuel consumption. The main objective of this work was to provide information and guidance on the allowable speeds for permitted vehicles and loads on bridges .A field test program was implemented on five bridges (i.e., two steel girder bridges, two pre-stressed concrete girder bridges, and one concrete slab bridge) to investigate the dynamic response of bridges due to vehicle loadings. The important factors taken into account during the field tests included vehicle speed, entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, and semi-truck), and bridge geometric characteristics (i.e., long span and short span). Three entrance conditions were used: As-is and also Level 1 and Level 2, which simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between the bridge end and approach slab and directly next to the joint, respectively. The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) for all gauges installed on each bridge under the different loading scenarios.
Resumo:
Numerical experiments with the Brazilian additions to the Regional Atmospheric Modeling System were performed with two nested grids (50 and 10 km horizontal resolution, respectively) with and without the effect of biomass burning for 8 different situations for 96 h integrations. Only the direct radiative effect of aerosols is considered. The results were analyzed in large areas encompassing the BR163 road (one of the main areas of deforestation in the Amazon). mainly where most of the burning takes place. The precipitation change due to the direct radiative impact of biomass burning is generally negative (i.e., there is a decrease of precipitation). However, there are a few cases with a positive impact. Two opposite forcing mechanisms were explored: (a) the thermodynamic forcing that is generally negative in the sense that the aerosol tends to stabilize the lower atmosphere and (b) the dynamic impact associated with the low level horizontal pressure gradients produced by the aerosol plumes. In order to understand the non-linear relationship between the two effects, experiments were performed with 4-fold emissions. In these cases, the dynamic effect overcomes the stabilization produced by the radiative forcing and precipitation increase is observed in comparison with the control experiment. This study suggests that. in general, the biomass burning radiative forcing decreases the precipitation. However, very large concentrations of aerosols may lead to an increase of precipitation due to the dynamical forcing associated with the horizontal pressure gradients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using the coupled climate model CLIMBER-3α, we investigate changes in sea surface elevation due to a weakening of the thermohaline circulation (THC). In addition to a global sea level rise due to a warming of the deep sea, this leads to a regional dynamic sea level change which follows quasi-instantaneously any change in the ocean circulation. We show that the magnitude of this dynamic effect can locally reach up to ~1m, depending on the initial THC strength. In some regions the rate of change can be up to 20-25 mm/yr. The emerging patterns are discussed with respect to the oceanic circulation changes. Most prominent is a south-north gradient reflecting the changes in geostrophic surface currents. Our results suggest that an analysis of observed sea level change patterns could be useful for monitoring the THC strength.
Resumo:
It is very well known that the addition of polymers to a liquid increases the shear viscosity of the solution. In other words, the polymer increases the dissipation of the flow energy. Contrarily, in turbulent flow, some particular macromolecules in very low concentration are able to produce large attenuation in the turbulence and thus, decreasing the dissipation of the energy. This article present a brief revision about macroscopic and molecular models used to explain this dynamic effect. Some of the experimental techniques used to quantify the attenuation of the turbulence and the main active substances are also discussed.
Resumo:
Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 188 and Iowa Highway Research Board - Bulletin No. 17. In the design of highway bridges, the 'static live load is multiplied by a factor to compensate for the dynamic effect of moving vehicles. This factor, commonly referred to as an impact factor, is intended to provide for the dynamic response of the bridge to moving loads and suddenly applied forces. Many investigators have published research which contradicts the current impact formula 1,4,17. Some investigators feel that the problem of impact deals not only with the increase in over-all static live load but that it is an integral part of a dynamic load distribution problem. The current expanded highway program with the large number of bridge structures required emphasizes the need for investigating some of the dynamic behavior problems which have been generally ignored by highway engineers. These problems generally result from the inability of a designer to predict the dynamic response of a bridge structure. Many different investigations have been made of particular portions of the overall dynamic problem. The results of these varied investigations are inevitably followed by a number of unanswered questions. Ironically, many of the unanswered questions are those which are of immediate concern in the design of highway bridges, and this emphasizes the need for additional research on the problem of impact.
Resumo:
It is very well known that the addition of polymers to a liquid increases the shear viscosity of the solution. In other words, the polymer increases the dissipation of the flow energy. Contrarily, in turbulent flow, some particular macromolecules in very low concentration are able to produce large attenuation in the turbulence and thus, decreasing the dissipation of the energy. This article present a brief revision about macroscopic and molecular models used to explain this dynamic effect. Some of the experimental techniques used to quantify the attenuation of the turbulence and the main active substances are also discussed.
Resumo:
The need for a reconsideration of resilience from both a positive and a normative point of view can be discussed using some of the lessons and conclusions drawn from individual resilience studied by psychologists in an educational context. The main point made in this article is that unless we want to approach resilience as a feature which is exogenously given in each population and society and whose dynamics, if any, are not subject to deliberate actions and policies, we need a framework for the evaluation of resilience as a social good. Relying on the hope that resilience is necessarily built in our societies as a force guaranteeing convergence to a socially desirable point of social evolution may be too optimistic and even counterproductive, because it may lead us to an inefficient or biased political and regulatory decision making. When the effect of policies and actions at a national or international level take into account the dynamic effect of such actions on resilience itself, one cannot blindly rely on the goodness of the process any more. This is mainly because resilience is not uniformly embodied in all societies and it does not have a globally positive social value by itself. The issue of socially valuing the options available beyond market-price valuations becomes fundamental in this context.
Resumo:
Nesta dissertação é apresentado o desenvolvimento de algoritmos para aplicação do método Bridge-Weigh In Motion (B-WIM) para a pesagem em movimento de trens e para a caracterização do tráfego ferroviário, permitindo-se obter informações sobre a velocidade de passagem dos trens, número e espaçamento entre eixos. Os sistemas B-WIM a partir de uma simples instrumentação permitem determinar as cargas por eixo de veículos em movimento, eliminando o efeito dinâmico. Foram implementados os algoritmos para a determinação dos valores referentes a geometria do trem e das cargas, que foi validado a partir de um exemplo teórico, onde se simulou a passagem de um trem de características conhecidas sobre a ponte e as cargas por eixos foram determinadas com 100% de exatidão. Além disso, foi feito um exemplo numérico em elementos finitos, de um viaduto em concreto armado para aplicação do método, onde foi feita a determinação das cargas por eixo para diferentes velocidades de passagem do trem. A fim de reduzir o tempo de processamento nas análises do exemplo numérico, foi desenvolvido um algoritmo para a geração de cargas nodais no modelo numérico que reduziram o tempo de processamento em até 96% quando comparado com a análise de múltiplos passos (“Multi-Step”), que simula automaticamente a passagem do trem sobre a estrutura. Finalmente, o método foi testado em um caso real a partir de monitorações realizadas em um viaduto de concreto armado da Estrada de Ferro Carajás. Apesar de não ter sido possível a determinação das cargas por eixo da locomotiva, foi possível medir precisamente o peso bruto total da locomotiva quando se utilizou o modelo constitutivo de Collins & Mitchell (1991) para o concreto.
The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair
Resumo:
When a pair of tandem cylinders is immersed in a flow the downstream cylinder can be excited into wake-induced vibrations (WIV) due to the interaction with vortices coming from the upstream cylinder. Assi, Bearman & Meneghini ( J. Fluid Mech. , vol. 661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates across the wake. In the present paper we investigate how the cylinder responds to that excitation, characterising the amplitude and frequency of response and its dependency on other parameters of the system. We introduce the concept of wake stiffness , a fluid dynamic effect that can be associated, to a first approximation, with a linear spring with stiffness proportional to Re and to the steady lift force occurring for staggered cylinders. By a series of experiments with a cylinder mounted on a base without springs we verify that such wake stiffness is not only strong enough to sustain oscillatory motion, but can also dominate over the structural stiffness of the system. We conclude that while unsteady vortex–structure interactions provide the energy input to sustain the vibrations, it is the wake stiffness phenomenon that defines the character of the WIV response
Resumo:
Subaquatic volcanic activity has been ongoing in Lake Kivu since the early Holocene and has a dynamic effect on the biological productivity in the surface water, and the preservation of carbonate in the deep anoxic water. Groundwater discharge into the lake’s deepwater propels the upward advection of the water column that ultimately supplies nutrients to the surface water for biological production. The amount of nutrients supplied from the deepwater can be increased suddenly by (1) a cold meteorological event that drives deep seasonal mixing resulting in increased nutrients from below and oxygen from above, or (2) subaquatic volcanic activity that induces a buoyant hydrothermal plume, which entrains nutrients from the deepwater and results in anoxia or suboxic conditions in the surface water. Previous sedimentological studies in Lake Kivu have hypothesized that regional climatic changes are responsible for sudden changes in the preservation of carbonates in the Main Basin. Here we reveal that sublacustrine volcanic events most likely induce the abrupt changes to the geochemistry in the sediment in Lake Kivu. An unprecedented look into the sediment stratigraphy and geochemistry from high-resolution seismic-reflection, and 15N-isotope analyses was conducted in the Main Basin. The results reveal that buoyant hydrothermal plumes caused by subaquatic volcanic activity are a possible trigger for increased biological productivity and organic matter preservation, and that ongoing hydrothermal activity increases the alkalinity in the deepwater, leading to carbonate preservation. The onset of carbonate preservation since the 1970s that is currently observed in the sediment could indicate that hydrothermal discharge has recently increased in the lake.
Resumo:
In topographically flat wetlands, where shallow water table and conductive soil may develop as a result of wet and dry seasons, the connection between surface water and groundwater is not only present, but perhaps the key factor dominating the magnitude and direction of water flux. Due to their complex characteristics, modeling waterflow through wetlands using more realistic process formulations (integrated surface-ground water and vegetative resistance) is an actual necessity. This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%. The coupling of FLO-2D model with MODFLOW-2005 model and the incorporation of the dynamic effect of flow resistance due to vegetation performed in the new modeling tool WHIMFLO-2D is an important contribution to the field of numerical modeling of hydrologic flow in wetlands.
Resumo:
This paper is on a wind energy conversion system simulation of a transient analysis due to a blade pitch control malfunction. The aim of the transient analysis is the study of the behavior of a back-to-back multiple point clamped five-level full-power converter implemented in a wind energy conversion system equipped with a permanent magnet synchronous generator. An alternate current link connects the system to the grid. The drive train is modeled by a three-mass model in order to simulate the dynamic effect of the wind on the tower. The control strategy is based on fractional-order control. Unbalance voltages in the DC-link capacitors are lessen due to the control strategy, balancing the capacitor banks voltages by a selection of the output voltage vectors. Simulation studies are carried out to evaluate not only the system behavior, but also the quality of the energy injected into the electric grid.
Resumo:
In this study, a high-performance composite was prepared from jute fabrics and polypropylene (PP). In order to improve the compatibility of the polar fibers and the non-polar matrix, alkyl gallates with different hydrophobic groups were enzymatically grafted onto jute fabric by laccase to increase the surface hydrophobicity of the fiber. The grafting products were characterized by FTIR. The results of contact angle and wetting time showed that the hydrophobicity of the jute fabrics was improved after the surface modification. The effect of the enzymatic graft modification on the properties of the jute/PP composites was evaluated. Results showed that after the modification, tensile and dynamic mechanical properties of composites improved, and water absorption and thickness swelling clearly decreased. However, tensile properties drastically decreased after a long period of water immersion. The thermal behavior of the composites was evaluated by TGA/DTG. The fiber-matrix morphology in the modified jute/PP composites was confirmed by SEM analysis of the tensile fractured specimens.
Resumo:
This master’s thesis aims to examine the relationship between dynamic capabilities and operational-level innovations. In addition, measures for the concept of dynamic capabilities are developed. The study was executed in the magazine publishing industry which is considered favourable for examining dynamic capabilities, since the sector is characterized by rapid change. As a basis for the study and the measure development, a literary review was conducted. Data for the empirical section was gathered by a survey targeted to chief-editors of Finnish consumer magazines. The relationship between dynamic capabilities and innovation was examined by multiple linear regression. The results indicate that dynamic capabilities have effect on the emergence of radical innovations. Environmental dynamism’s effect on radical innovations was not detected. Also, dynamic capabilities’ effect on innovation was not greater in turbulent operating environment.