63 resultados para dwarfism
Resumo:
We have characterized potato (Solanum tuberosum L.) plants expressing a soybean leghemoglobin that is targeted to plastids. Transgenic plants displayed a dwarf phenotype caused by short internode length, and exhibited increased tuberization in vitro. Under in vivo conditions that do not promote tuberization, plants showed smaller parenchymal cells than control plants. Analysis of gibberellin (GA) concentrations indicated that the transgenic plants have a substantial reduction (approximately 10-fold) of bioactive GA(1) concentration in shoots. Application of GA(3) to the shoot apex of the transformed plants completely restored the wild type phenotype suggesting that GA-biosynthesis rather than signal transduction was limiting. Since the first stage of the GA-biosynthetic pathway is located in the plastid, these results suggest that an early step in the pathway may be affected by the presence of the leghemoglobin.
Resumo:
We report clinical, anthropometric and radiological findings in 4 siblings with a new type of skeletal dysplasia. 4 normally intelligent girls exhibit dwarfism between -3.4 and -4.6 standard deviations with accentuated shortening of the lower limbs, moderate deformity of the vertebral bodies, mildly striated metaphyses, saddle nose, frontal bossing, and relatively large head. The family pedigree suggests autosomal recessive inheritance. We propose the designation of SPONASTRIME dysplasia, derived from spondylar and nasal alterations with striation of the metaphyses.
Resumo:
Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs
Resumo:
We describe a mild form of disproportionate dwarfism in Labrador Retrievers, which is not associated with any obvious health problems such as secondary arthrosis. We designate this phenotype as skeletal dysplasia 2 (SD2). It is inherited as a monogenic autosomal recessive trait with incomplete penetrance primarily in working lines of the Labrador Retriever breed. Using 23 cases and 37 controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 4.44 Mb interval on chromosome 12. We re-sequenced the genome of one affected dog at 30x coverage and detected 92 non-synonymous variants in the critical interval. Only two of these variants, located in the lymphotoxin A (LTA) and collagen alpha-2(XI) chain gene (COL11A2), respectively, were perfectly associated with the trait. Previously described COL11A2 variants in humans or mice lead to skeletal dysplasias and/or deafness. The dog variant associated with disproportionate dwarfism, COL11A2:c.143G>C or p.R48P, probably has only a minor effect on collagen XI function, which might explain the comparatively mild phenotype seen in our study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of COL11A2 mutations. We speculate that non-pathogenic COL11A2 variants might even contribute to the heritable variation in height.
Resumo:
During the summer of 2013 seven Italian Tyrolean Grey calves were born with abnormally short limbs. Detailed clinical and pathological examination revealed similarities to chondrodysplastic dwarfism. Pedigree analysis showed a common founder, assuming autosomal monogenic recessive transmission of the defective allele. A positional cloning approach combining genome wide association and homozygosity mapping identified a single 1.6 Mb genomic region on BTA 6 that was associated with the disease. Whole genome re-sequencing of an affected calf revealed a single candidate causal mutation in the Ellis van Creveld syndrome 2 (EVC2) gene. This gene is known to be associated with chondrodysplastic dwarfism in Japanese Brown cattle, and dwarfism, abnormal nails and teeth, and dysostosis in humans with Ellis-van Creveld syndrome. Sanger sequencing confirmed the presence of a 2 bp deletion in exon 19 (c.2993_2994ACdel) that led to a premature stop codon in the coding sequence of bovine EVC2, and was concordant with the recessive pattern of inheritance in affected and carrier animals. This loss of function mutation confirms the important role of EVC2 in bone development. Genetic testing can now be used to eliminate this form of chondrodysplastic dwarfism from Tyrolean Grey cattle.
Resumo:
Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.
Resumo:
Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia.
Resumo:
Includes bibliography.
Resumo:
Objective To determine the mode of inheritance of congenital proportionate dwarfism in Angus and Angus crossbred cattle, initially detected in two commercial beef herds in northern New South Wales. Design Matings of normal carrier sires to unrelated cows of diverse breeds, and of one carrier sire to his unaffected daughters. An unrelated Piedmontese bull was also mated to unaffected daughters of the carrier sires. Procedure Two carrier Angus bulls and nine unaffected daughters, all of whom were completely indistinguishable from normal animals, were purchased for controlled breeding studies under known nutritional and disease conditions. Affected and carrier individuals were examined for the presence of obvious chromosomal abnormalities. Results Angus dwarfism has been successfully reproduced under controlled experimental conditions over successive years using unrelated dams and is undoubtedly heritable. The high frequency of occurrence of affected individuals (23/61 = 0.38 +/- .06) among the progeny of matings of the Angus sires to unrelated females of diverse breeding is not compatible with recessive inheritance, because of the negligible frequency of proportionate dwarfism in the breeds of the dams. Both paternal and maternal transmission of the defect was demonstrated, so that imprinting in the strict sense of a gene that is only expressed when received from the male parent appears not to be involved. Tested individuals showed no evidence of gross chromosomal abnormality. Dominant autosomal inheritance with incomplete penetrance was indicated by the lack of expression of the defective gene in the two Angus sires and in three unaffected daughters who produced dwarf calves from matings to the Piedmontese bull. Conclusions The mode of inheritance is that of a single autosomal dominant gene with a penetrance coefficient of 0.75 +/- 0.12, estimated from the observed incidence of 23/61 affected offspring of the two carrier Angus bulls mated to unrelated dams. Simple genetic models involving either (i) an unstable mutant which changes at high frequency to the expressed dominant dwarfing allele during gametogenesis, or (ii) a dominant allele with penetrance determined by an unlinked modifying locus, are shown to be compatible with the experimental data. Both models indicate that penetrance of the dwarfing gene may possibly be higher in matings involving carrier daughters of the two Angus bulls.
Resumo:
P>Aim The aim of this study was to investigate the possible associations between isolated growth hormone deficiency (IGHD) and periodontal attachment loss (PAL) in adults affected by congenital IGHD. Materials and methods Forty-five previously identified IGHD subjects were eligible for this study. The final study sample comprised 32 cases (gender:20M/12F; age:44.8 +/- 17.5) matched for age, gender, diabetes, smoking status and income to 32 controls (non-IGHD subjects). Participants were submitted to a full-mouth clinical examination of six sites per tooth and were interviewed using a structured, written questionnaire. Periodontitis was defined as proximal PAL >= 5 mm affecting >= 30% of teeth. Results No significant differences were observed in the percentage of sites with visible plaque between IGHD and non-IGHD subjects (59.4% versus 46.9%, p=0.32). IGHD subjects had significant less supragingival calculus (31.3% versus 59.4%, p=0.02) and more bleeding on probing (71.9% versus 18.8%, p < 0.01) than controls. PAL >= 5 mm was significantly more prevalent (100% versus 71.9%, p < 0.01) and affected more teeth (30.5% versus 6.7%, p < 0.01) in cases than in controls. After adjusting for supragingival calculus, IGHD cases had a higher likelihood of having periodontitis than controls (OR=17.4-17.8, 95% CI=2.3-134.9, p=0.004-0.005). Conclusion Congenital IGHD subjects have a greater chance of having PAL.
Resumo:
SLC26A2-related dysplasias encompass a spectrum of diseases: from lethal achondrogenesis type 1B (ACG1B; MIM #600972) and atelosteogenesis type 2 (AO2; MIM #256050) to classical diastrophic dysplasia (cDTD; MIM #222600) and recessive multiple epiphyseal dysplasia (rMED; MIM #226900). This study aimed at characterizing clinically, radiologically and molecularly 14 patients affected by non-lethal SLC26A2-related dysplasias and at evaluating genotype-phenotype correlation. Phenotypically, eight patients were classified as cDTD, four patients as rMED and two patients had an intermediate phenotype (mild DTD - mDTD, previously 'DTD variant'). The Arg279Trp mutation was present in all patients, either in homozygosity (resulting in rMED) or in compound heterozygosity with the known severe alleles Arg178Ter or Asn425Asp (resulting in DTD) or with the mutation c.727-1G>C (causing mDTD). The 'Finnish mutation', c.-26+2T>C, and the p.Cys653Ser, both frequent mutations in non-Portuguese populations, were not identified in any of the patients of our cohort and are probably very rare in the Portuguese population. A targeted mutation analysis for p.Arg279Trp and p.Arg178Ter in the Portuguese population allows the identification of approximately 90% of the pathogenic alleles.
Resumo:
We report three unrelated patients with Kenny syndrome. Clinical symptoms included severe dwarfism, with internal cortical thickening and medullary stenosis of the tubular bones, normal bone age, macrocephaly, absent diploic space, delayed closure of the anterior fontanel, and normal intelligence; two of the patients had hyperopia and papillary edema. The patients also had episodic hypocalcemic tetany and low serum levels of magnesium. In two patients the diagnosis of idiopathic hypoparathyroidism was established on the basis of undetectable serum parathyroid hormone (PTH) levels (N- and C-terminal RIAs); one of these had normal urinary cyclic adenosine monophosphate (cAMP) response to exogenous PTH. Circulating calcitonin was undetectable in either patient. In a third patient, who had abnormal body proportions, serum levels of PTH were increased in an RIA detecting predominantly intact PTH (N-RIA) and undetectable in another RIA recognizing carboxy-terminal fragments (C-RIA). Administration of PTH promptly increased urinary cAMP excretion. In this patient, serum levels of calcitonin were increased, whereas values for 25-OHD and 1,25(OH)2D were normal.
Resumo:
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in the striatum and a reduction in the number of binding sites in both striatum and projection areas. These findings suggest that hyperactivity may be the consequence of a thyroid hormone deficiency-induced removal of the endocannabinoid tone, normally acting as a brake for hyperactivity at the basal ganglia. In agreement with the decrease in CB(1) receptor gene expression, a lower cannabinoid response, measured by biochemical, genetic and behavioral parameters, was observed in the hypothyroid animals. Finally, both CB(1) receptor gene expression and the biochemical and behavioral dysfunctions found in the hypothyroid animals were improved after a thyroid hormone replacement treatment. Thus, the present study suggests that impairment in the endocannabinoid system can underlay the hyperactive phenotype associated with hypothyroidism.
Resumo:
Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome). We now report that autosomal-recessive omodysplasia, a genetic condition characterized by short-limbed short stature, craniofacial dysmorphism, and variable developmental delay, maps to chromosome 13 (13q31.1-q32.2) and is caused by point mutations or by larger genomic rearrangements in glypican 6 (GPC6). All mutations cause truncation of the GPC6 protein and abolish both the HS-binding site and the GPI-bearing membrane-associated domain, and thus loss of function is predicted. Expression studies in microdissected mouse growth plate revealed expression of Gpc6 in proliferative chondrocytes. Thus, GPC6 seems to have a previously unsuspected role in endochondral ossification and skeletal growth, and its functional abrogation results in a short-limb phenotype.
Resumo:
AimSmall body size in Madagascar's dwarf and mouse lemurs (Cheirogaleidae) is generally viewed as primitive. We investigated the evolution of body size in this family and in its sister-taxon, the Lepilemuridae, from phylogenetic, ontogenetic and adaptive perspectives. LocationMadagascar. MethodsWe used a phylogenetic method to reconstruct the evolution of body size in lemurs, and allometric regression models of gestation periods and static and growth allometries in Cheirogaleidae and Lepilemuridae to test the hypothesis that dwarfing occurred as a result of truncated ontogeny (progenesis). We also examined adaptive hypotheses relating body size to environmental variability, life history, seasonality of reproduction, hypothermy (use of torpor), and a diet rich in plant exudates. ResultsOur results indicated that cheirogaleids experienced at least four independent events of body size reduction from an ancestor as large as living Lepilemuridae, by means of progenesis. Our interpretation is supported by the paedomorphic appearance and parallel ontogenetic trajectories of the dwarf taxa, as well as their very short gestation periods and increased fecundity. Lepilemur species that occupy more predictable environments are significantly larger than those occupying unpredictable habitats. Main conclusionsCheirogaleidae appear to be paedomorphic dwarfs, a consequence of progenesis, probably as an adaptation to high environmental unpredictability. Although the capacity to use hypothermy is related to small body size, this advantage is unlikely to have driven dwarfing in cheirogaleids. We propose that gummmivory/exudativory co-evolved with body size reduction in this clade, probably from a folivorous ancestor. Their small size is derived, and their suitability as models for the ancestral primate' is therefore dubious.