935 resultados para duration calculus
Resumo:
As one of the newest members in Articial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the eld of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of real-time systems can be employed. The ndings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calcu- lus (DC), to specify a simplied single-cell model of the DCA. Based on the DC specications with further induction, we nd that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constricts its real-time capability. As a result, we conclude that the analysis process of the standard DCA should be replaced by a real-time analysis component, which can perform periodic analysis for the purpose of real-time detection.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.
Resumo:
The real-time refinement calculus is a formal method for the systematic derivation of real-time programs from real-time specifications in a style similar to the non-real-time refinement calculi of Back and Morgan. In this paper we extend the real-time refinement calculus with procedures and provide refinement rules for refining real-time specifications to procedure calls. A real-time specification can include constraints on, not only what outputs are produced, but also when they are produced. The derived programs can also include time constraints oil when certain points in the program must be reached; these are expressed in the form of deadline commands. Such programs are machine independent. An important consequence of the approach taken is that, not only are the specifications machine independent, but the whole refinement process is machine independent. To implement the machine independent code on a target machine one has a separate task of showing that the compiled machine code will reach all its deadlines before they expire. For real-time programs, externally observable input and output variables are essential. These differ from local variables in that their values are observable over the duration of the execution of the program. Hence procedures require input and output parameter mechanisms that are references to the actual parameters so that changes to external inputs are observable within the procedure and changes to output parameters are externally observable. In addition, we allow value and result parameters. These may be auxiliary parameters, which are used for reasoning about the correctness of real-time programs as well as in the expression of timing deadlines, but do not lead to any code being generated for them by a compiler. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Our objective was to investigate spinal cord (SC) atrophy in amyotrophic lateral sclerosis (ALS) patients, and to determine whether it correlates with clinical parameters. Forty-three patients with ALS (25 males) and 43 age- and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images covering the whole brain and the cervical SC to estimate cervical SC area and eccentricity at C2/C3 level using validated software (SpineSeg). Disease severity was quantified with the ALSFRS-R and ALS Severity scores. SC areas of patients and controls were compared with a Mann-Whitney test. We used linear regression to investigate association between SC area and clinical parameters. Results showed that mean age of patients and disease duration were 53.1 ± 12.2 years and 34.0 ± 29.8 months, respectively. The two groups were significantly different regarding SC areas (67.8 ± 6.8 mm² vs. 59.5 ± 8.4 mm², p < 0.001). Eccentricity values were similar in both groups (p = 0.394). SC areas correlated with disease duration (r = - 0.585, p < 0.001), ALSFRS-R score (r = 0.309, p = 0.044) and ALS Severity scale (r = 0.347, p = 0.022). In conclusion, patients with ALS have SC atrophy, but no flattening. In addition, SC areas correlated with disease duration and functional status. These data suggest that quantitative MRI of the SC may be a useful biomarker in the disease.
Resumo:
The survival, absolute population size, gonotrophic cycle duration, and temporal and spatial abundance of Nyssomyia neivai (Pinto) were studied in a rural area endemic for American cutaneous leishmaniasis (ACL) in Conchal, Sõo Paulo State, southeastern Brazil, using mark-release-recapture techniques and by monitoring population fluctuation. The monthly abundance exhibited a unimodal pattern, with forest and domicile habitats having the highest relative abundances. A total of 1,873 males and 3,557 females were marked and released during the six experiments, of which 4.1-13.0 per cent of males and 4.1-11.8 per cent of females were recaptured. Daily survivorship estimated from the decline in recaptures per day was 0.681 for males and 0.667 for females. Gonotrophic cycle duration was estimated to be 4.0 d. Absolute population size was calculated using the Lincoln Index and ranged from 861 to 4,612 males and from 2,187 to 19,739 females. The low proportion of females that reach the age when they are potentially infective suggests that N. neivai has a low biological capacity to serve as a vector and that factors such as high biting rates and opportunistic feeding behavior would be needed to enable Leishmania (Viannia) braziliensis Vianna transmission. This agreed with the epidemiological pattern of ACL in southeastern Brazil that is characterized by low incidence, with isolated cases acquired principally within domiciliary habitats
Resumo:
Previous studies found students who both work and attend school undergo a partial sleep deprivation that accumulates across the week. The aim of the present study was to obtain information using a questionnaire on a number of variables (e.g., socio-demographics, lifestyle, work timing, and sleep-wake habits) considered to impact on sleep duration of working (n=51) and non-working (n=41) high-school students aged 14-21 yrs old attending evening classes (19:00-22:30 h) at a public school in the city of So Paulo, Brazil. Data were collected for working days and days off. Multiple linear regression analyses were performed to assess the factors associated with sleep duration on weekdays and weekends. Work, sex, age, smoking, consumption of alcohol and caffeine, and physical activity were considered control variables. Significant predictors of sleep duration were: work (p < 0.01), daily work duration (8-10 h/day; p < 0.01), sex (p=0.04), age 18-21 yrs (0.01), smoking (p=0.02) and drinking habits (p=0.03), irregular physical exercise (p < 0.01), ease of falling asleep (p=0.04), and the sleep-wake cycle variables of napping (p < 0.01), nocturnal awakenings (p < 0.01), and mid-sleep regularity (p < 0.01). The results confirm the hypotheses that young students who work and attend school showed a reduction in night-time sleep duration. Sleep deprivation across the week, particularly in students working 8-10 h/day, is manifested through a sleep rebound (i.e., extended sleep duration) on Saturdays. However, the different roles played by socio-demographic and lifestyle variables have proven to be factors that intervene with nocturnal sleep duration. ) The variables related to the sleep-wake cycle naps and night awakenings proved to be associated with a slight reduction in night-time sleep, while regularity in sleep and wake-up schedules was shown to be associated with more extended sleep duration, with a distinct expression along the week and the weekend. Having to attend school and work, coupled with other socio-demographic and lifestyle factors, creates an unfavorable scenario for satisfactory sleep duration
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.
Resumo:
This study examined the effects of temperature and wetness duration in vitro and in vivo as well as the effects of fruit age on germination and appressoria formation by conidia of Guignardia psidii, the causal agent of black spot disease in guava fruit. The temperatures tested for in vitro and in vivo experiments were 10, 15, 20, 25, 30, 35 and 40 degrees C. The wetness periods studied were 6, 12, 24, 36 and 48 h in vitro and 6, 12 and 24 h in vivo. Fruit 10, 35, 60, 85 and 110-days old were inoculated and maintained at 25 degrees C, with a wetness period of 24 h. Temperature and wetness duration affected the variables evaluated in vitro and in vivo. All variables reached their maximum values at between 25 and 30 degrees C with a wetness duration of 24 h in vivo and 48 h in vitro. These conditions resulted in 31.3% conidia germination, 33.6% appressoria formation and 32.5% appressoria melanization in vitro, and 50.4% conidia germination and 9.5% appressoria formation in vivo. Fruit age also influenced these factors. As fruit age increased, conidia germination and appressoria formation gradually increased. Conidia germination and appressoria formation were 10.8% and 2.3%, respectively, in 10-day-old fruits. In 110-day-old fruits, conidia germination and appressoria formation were 42.5% and 23.2% respectively.
Resumo:
To determine the effect of sensor placement on the performance of a disease-warning system for sooty blotch and flyspeck (SBFS), we measured leaf wetness duration (LWD) at 12 canopy positions in apple trees, then simulated operation of the disease-warning system using LWD measurements from different parts of the canopy. LWD sensors were placed in four trees within one Iowa orchard during two growing seasons, and in one tree in each of four orchards during a single growing season. The LWD measurements revealed substantial heterogeneity among sensor locations. In all data sets, the upper, eastern portion of the canopy had the longest mean daily LWD, and was the first site to form dew and the last to dry. The lower, western portion of the canopy averaged about 3 It less LWD per day than the top of the canopy, and was the last zone where dew formed and the first to dry off. On about 25% of nights when dew occurred in the top of the canopy, no dew formed in the lower, western canopy. Intracanopy variability of LWD was more pronounced when dew was the sole source of wetness than on days when rainfall occurred. Daily LWD in the upper, eastern portion of the canopy was slightly less than reference measurements made at a 0.7-m height over turfgrass located near the orchard. When LWD measurements from several canopy positions were input to the SBFS warning system, timing of occurrence of a fungicide-spray threshold varied by as much as 30 days among canopy positions. Under Iowa conditions, placement of an LWD sensor at an unobstructed site over turfgrass was a fairly accurate surrogate for the wettest part of the canopy. Therefore, such an extra-canopy LWD sensor might be substituted for a within-canopy sensor to enhance operational reliability of the SBFS warning system.
Resumo:
Objective: We investigated the effect of supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine, both in the free form, on the plasma and tissue concentrations of glutamine, glutamate, and glutathione (GSH) in rats subjected to long-duration exercise. Methods: Rats were subjected to sessions of swim training. Twenty-one days before sacrifice, the animals were supplemented with DIP (1.5 g/kg, n = 6), a solution of free L-glutamine (1 g/kg) and free L-alanine (0.61 g/kg; GLN + ALA, n = 6), or water (CON, n = 6). Animals were sacrificed before (TR, n = 6) or after (LD, n = 6) long-duration exercise. Plasma concentrations of glutamine, glutamate, glucose, and ammonia and liver and muscle concentrations of glutamine, glutamate, and reduced and oxidized (GSSG) GSH were measured. Results: Higher concentrations of plasma glutamine were found in the DIP-TR and GLN + ALA-TR groups. The CON-LD group showed hyperammonemia, whereas the DIP-LD and GLN + ALA-LD groups exhibited lower concentrations of ammonia. Higher concentrations of glutamine, glutamate, and GSH/GSSG in the soleus muscle and GSH and GSH/GSSG in the liver were observed in the DIP-TR and GLN + ALA-TR groups. The DIP-LD and GLN + ALA-LD groups exhibited higher concentrations of GSH and GSH/GSSG in the soleus muscle and liver compared with the CON-LD group. Conclusion: Chronic oral administration of DIP and free GLN + ALA before long-duration exercise represents an effective source of glutamine and glutamate, which may increase muscle and liver stores of GSH and improve the redox state of the cell. (C) 2009 Published by Elsevier Inc.
Resumo:
In previous works we showed how to combine propositional multimodal logics using Gabbay's \emph{fibring} methodology. In this paper we extend the above mentioned works by providing a tableau-based proof technique for the combined/fibred logics. To achieve this end we first make a comparison between two types of tableau proof systems, (\emph{graph} $\&$ \emph{path}), with the help of a scenario (The Friend's Puzzle). Having done that we show how to uniformly construct a tableau calculus for the combined logic using Governatori's labelled tableau system \KEM. We conclude with a discussion on \KEM's features.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
This investigation was designed to examine the antinociceptive activity in rats of 3-O-acyl prodrugs of M6S relative to the parent drug, after intravenous and intramuscular injection, using the tail flick latency test of antinociception. M6S, 3-acetylmorphine-6-sulfate (3AcM6S), 3-propionylmorphine-6-sulfate (3PrM6S), 3-butanoylmorphine-6-sulfate (3BuM6S) and 3-heptanoylmorphine-6-sulfate (3HpM6S) were administered by the IV route in a dose of 4.10 mu mol/kg. Relatively high levels of antinociception (>40% Maximum Possible Effect) were achieved following administration of M6S, 3AcM6S and 3PrM6S, whereas insignificant antinociception (<20%MPE) was achieved following administration of 3BuM6S or 3HpM6S. Although the mean duration of action for 3AcM6S (6 h) was longer than for M6S or 3PrM6S (4 h), the mean area (+/- S.E.M.) under the degree of antinociception versus time curve (AUG) for 3AcM6S (151.6 +/- 6.9%MPE h) was not significantly different (p <0.05) from that for M6S (120.8 +/- 32.7%MPE h) or for 3PrM6S (106.0 +/- 21.3%MPE h). The mean ED50 (range) doses for M6S, 3AcM6S and 3PrM6S were calculated to be 4.16 (3.61-4.48), 4.32 (3.55-5.09) and 4.54 (4.21-4.79) mu mol/kg, respectively. Preliminary studies were conducted on potential long-acting formulations containing 8 x ED50 doses of M6S and the 3-acetyl and 3-propionyl esters suspended in soybean oil. These showed that 3PrM6S gave a greater AUC (mean + S.E.M.) (1087.4 +/- 97.4%MPE h) and longer duration of action (20 h) than did M6S (613.1 +/- 155.9%MPE h; 10 h duration) or 3AcM6S (379.3 + 114.2%MPE h: 8 h duration). Further studies are needed to more fully investigate these findings. (C) 1998 Elsevier Science B.V. All rights reserved.