975 resultados para duplex stainless steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure evolution during hot deformation of a 23Cr-5Ni-3Mo duplex stainless steel was investigated in torsion. The presence of a soft δ ferrite phase in the vicinity of austenite caused strain partitioning, with accommodation of more strain in the δ ferrite. Furthermore, owing to the limited number of austenite/austenite grain boundaries, the kinetics of dynamic recrystallisation (DRX) in austenite was very slow. The first DRX grains in the austenite phase formed at a strain beyond the peak and proceeded to <15% of the microstructure at the rupture strain of the sample. On the other hand, the microstructure evolution in δ ferrite started by formation of low angle grain boundaries at low strains and the density of these boundaries increased with increasing strain. There was clear evidence of continuous dynamic recrystallisation in this phase at strains beyond the peak. However, in the δ ferrite phase at high strains, most grains consisted of δ/δ and δ/γ boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 °C using a strain rate of 1 s−1. High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data includes EBSD orentation maps of the specimens deformed in torsion at 1200 degrees celsius to strains of 0.1, 0.5, 0.9 and 1.3. The phase ratio is about 60% austenite and 40% ferrite. The miscrostructure is dynamically recovered and there is also some dynamic recrystallisation at strains of 0.9 and 1.3. The main portion of softening can be attributed to dynamic subgrain coalescence in austenite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duplex stainless steels (DSSs) have many advantages due to the unique structural combination of ferrite and austenite grains. The structural change of these materials is very complex during welding, and it deteriorates the functional properties. This research investigates different welding processes such as laser beam, resistance, tungsten inert gas, friction stir, submerged arc, and plasma arc weldings considering the research available in the literature. The welding mechanism, change of material structure, and control parameters have been analyzed for every welding process. This analysis clearly shows that DSS melts in all most all welding processes, but the thermal cycle and maximum heat input are different. This difference affects the resulting structure and functional properties of the weld significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter investigates two important processing methods, such as welding and machine of duplex stainless steel. The welding process welding generally degrades the properties of these materials by redistributing the phases during melting and solidification. On the other hand, the redistribution during machining mainly take place combined effect of stress, strain rate and temperature. Mechanism of machining process and several welding methods has been analysed in details. It was found that outcomes of welding processes depend on the welding methods. Most of the cases an appropriate annealing process can be used to restore the expected properties of the weld joints though the parameters of annealing process are different in different welding methods. Nonmetallic inclusions and the low carbon content of duplex stainless steel reduce the machinability of duplex stainless steel. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Abrasion and adhesion were the most common wear modes developed on the flank and rake faces. Adhesion wear being the most prevalent on the flank face, appeared to be initiated by built-up edge formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of reinforcing stainless steels (SS) in concrete have proved to be one of the most effective methods to guarantee the passivity of reinforced concrete structures exposed to chloride contaminated environment. The present research studies the corrosion behaviour of a new duplex SS reinforcements with low nickel content (LND) (more economicaly compatible) is compared with the conventional austenitic AISI 304 SS and duplex AISI 2304 SS. Corrosion behaviour of ribbed SS reinforcements was studied in mortars with chloride content (0, 0.4, 2 and 4% Cl ⎯ ) using linear polarization resistance and potentiostatic pulses technique, Ecorr and Rp values were monitored over the exposure time. The obtained icorr data for the new duplex stainless steel LND no afforded passivity breakdown after one year exposure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents some preliminary results of an ongoing research intended to qualify a highly resistant duplex stainless steel wire as prestressing steel and, gets on insight on (he wires' fracture micromechanism and residual stresses field. SEM fractographic analysis of the stainless steel wires indicates an anisotropic fracture behavior in tension, in presence of surface flaws, attributed to the residual stresses generated through the fabrication process. The residual stresses magnitude influences the damage tolerance, its knowledge being a key issue in designating/qualifying the wires as prestressing steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents some preliminary results of an ongoing research intended to qualify a highly resistant duplex stainless steel wire as prestressing steel and, gets on insight on (he wires' fracture micromechanism and residual stresses field. SEM fractographic analysis of the stainless steel wires indicates an anisotropic fracture behavior in tension, in presence of surface flaws, attributed to the residual stresses generated through the fabrication process. The residual stresses magnitude influences the damage tolerance, its knowledge being a key issue in designating/qualifying the wires as prestressing steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study brings new insights on the hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire which concerns its potential use as active reinforcement for concrete prestressing. The adopted procedure was to experimentally state the effect of hydrogen on the damage tolerance of cylindrical smooth and precracked wire specimens exposed to stress corrosion cracking using the aggressive medium of the standard test developed by FIP (International Prestressing Federation). Stress corrosion testing, mechanical fracture tests and scanning electron microscopy analysis allowed the damage assessment, and explain the synergy between mechanical loading and environment action on the failure sequence of the wire. In presence of previous damage, hydrogen affects the wire behavior in a qualitative sense, consistently to the fracture anisotropy attributable to cold drawing, but it does not produce quantitative changes since the steel fully preserves its damage tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zeron 100 duplex stainless steel is susceptible to embrittlement following ageing at temperatures between 350 °C and 450 °C. The embrittlement is associated with cleavage of the age-hardened ferrite phase, initiated by deformation twinning. This can result in order of magnitude increases in the fatigue crack propagation rate. The effects of ageing on the mechanisms of fatigue crack propagation in Zero 100 are investigated, and a quantitative model is developed, accounting for the effects of hardness, temperature, stress level and microstructure on the fatigue crack growth rate. © 1994.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen assisted subcritical cleavage of the ferrite matrix occurs during fatigue of a duplex stainless steel in gaseous hydrogen. The ferrite fails by a cyclic cleavage mechanism and fatigue crack growth rates are independent of frequency between 0.1 and 5 Hz. Macroscopic crack growth rates are controlled by the fraction of ferrite grains cleaving along the crack front, which can be related to the maximum stress intensity, Kmax. A superposition model is developed to predict simultaneously the effects of stress intensity range (ΔK) and K ratio (Kmin/Kmax). The effect of Kmax is rationalised by a local cleavage criterion which requires a critical tensile stress, normal to the {001} cleavage plane, acting over a critical distance within an embrittled zone at the crack tip. © 1991.