51 resultados para dunaliella-tertiolecta


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3− transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). High- and low-Ci cells of both species had the capacity to transport CO2 and HCO3−, with maximum rates being largely unaffected by the growth conditions. In high- and low-Ci cells of D. tertiolecta, HCO3− was the dominant inorganic C species taken up, whereas HCO3− and CO2 were used at similar rates by C. reinhardtii. The apparent affinities of HCO3− transport and CO2 uptake increased 3- to 9-fold in both species upon acclimation to air. Photosynthetically active chloroplasts isolated from both species were able to transport CO2 and HCO3−. For chloroplasts from C. reinhardtii, the concentrations of HCO3− and CO2 required for half-maximal activity declined from 446 to 33 μm and 6.8 to 0.6 μm, respectively, after acclimation of the parent cells to air; the corresponding values for chloroplasts from D. tertiolecta decreased from 203 to 58 μm and 5.8 to 0.5 μm, respectively. These results indicate the presence of inducible high-affinity HCO3− and CO2 transporters at the chloroplast envelope membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. Results: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The uninterrupted rise in emission of greenhouse gases open way to the use of biofuels, due to politics that focus on fuel safe, clean and renewable. The use of microalgae for biodiesel production has been described as one of the most promising sources of biomass for biofuels. The aim of this study was to evaluate the extraction and lipid profile of the microalgae Dunaliella tertiolecta, Isochrysis galbana and Tetraselsim gracilis. The extractions were performed with solvents chloroform /methanol and petroleum ether. The lipid profile was analyzed by gas chromatography after transesterification.The petroleum ether showed more efficiency in the extraction, the best result obtained was in the microalgae D. tertiolecta with 19.52% of lipid. The lipid profile analysis indicated a biodiesel stable to oxidation and elevated viscosity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A phytotoxicity assay based on the ToxY-PAM dual-channel yield analyser has been developed and successfully incorporated into field assessments for the detection of phytotoxicants in water. As a means of further exploring the scope of the assay application and of selecting a model biomaterial to complement the instrument design, nine algal species were exposed to four chemical substances deemed of priority for water quality monitoring purposes (chlorpyrifos, copper, diuron and nonylphenol ethoxylate). Inter-species differences in sensitivity to the four toxicants varied by a factor of 1.9-100. Measurements of photosystem-II quantum yield using these nine single-celled microalgae as biomaterial corroborated previous studies which have shown that the ToxY-PAM dual-channel yield analyser is a highly sensitive method for the detection of PS-II impacting herbicides. Besides Phaeodactylum tricornutum, the previously applied biomaterial, three other species consistently performed well (Nitzschia closterium, Chlorella vulgaris and Dunaliella tertiolecta) and will be used in further test optimisation experiments. In addition to sensitivity, response time was evaluated and revealed a high degree of variation between species and toxicants. While most species displayed relatively weak and slow responses to copper, C. vulgaris demonstrated an IC10 of 51 μ g L-1, with maximum response measured within 25 minutes and inhibition being accompanied by a large decrease in fluorescence yield. The potential for this C vulgaris-based bioassay to be used for the detection of copper is discussed. There was no evidence that the standard ToxY-PAM protocol, using these unicellular algae species, could be used for the detection of chlorpyrifos or nonylphenol ethoxylate at environmentally relevant levels. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muito interesse tem sido focado no potencial biotecnológico das microalgas, principalmente devido à identificação de diversas substâncias sintetizadas por estes organismos, dentre elas a anidrase carbônica e as ficobiliproteínas. A anidrase carbônica é uma metaloenzima que catalisa a hidratação reversível do CO2 em bicarbonato com alta eficiência, sendo utilizada para captação de CO2 através de sistemas biológicos. A C-ficocianina e a aloficocianina, corantes naturais, são os dois principais componentes das ficobiliproteínas em cianobactérias e apresentam diversas aplicações dentro da indústria alimentícia, cosmética e farmacêutica. O objetivo principal desta tese foi avaliar a produção e a extração da anidrase carbônica e das ficobiliproteínas a partir de diferentes microalgas. Para isso, primeiramente foi realizado uma investigação da produção da anidrase carbônica pela microalga Dunaliella tertiolecta, onde foi estudada a extração da enzima e sua aplicação em sistemas de captura enzimática de CO2. Posteriormente foi avaliada a produção da enzima ao longo do cultivo de diferentes microalgas marinhas e dulcícolas (Dunaliella tertiolecta, Tetraselmis sueccica, Phaeodactylum tricornutum, Nannochloropsis oculata, Isochysis galbana, Chlorella vulgaris e Scenedesmus obliquus). A produção da enzima e de ficobiliproteínas, também, foi estudada para as cianobactérias Spirulina platensis LEB 52, Spirulina sp. LEB 18 e Synechococcus nidulans. Todos os cultivos foram acompanhados em termos de biomassa e pH. Por último, foi realizado um estudo de extração da enzima de P. tricornutum e extração conjunta da anidrase carbônica e de ficobiliproteínas da cianobactéria S. sp. LEB 18. Os cultivos foram realizados em frascos erlenmeyer contendo os meios Conway (marinhas), BG-11 (dulcícolas) e Zarrouk 20% (cianobactérias). Na avaliação da ruptura celular foram testadas as técnicas de maceração em gral e pistilo, agitação em vórtex com pérolas de vidro, sonicação com pérolas de vidro, homogeneizador ultrassônico, secagem, congelamento e descongelamento e a combinação de tratamentos. Maiores rendimentos de extração da enzima a partir da microalga D. tertiolecta foram obtidos utilizando tratamento ultrassônico, juntamente com baixas concentrações de biomassa úmida (0,1 e 0,2 g/L), e a mesma apresentou potencial para aplicação em processos de captação enzimática do CO2. Durante os cultivos, a microalga C. vulgaris se destacou como maior produtora da enzima anidrase carbônica, atingindo valores de atividade enzimática de 44,0 U/L. As cianobactérias apresentaram valores de atividade entre 41,6 e 45,9 U/L, sendo que a S. sp. LEB 18 foi a que apresentou maiores produções de C-ficocianina e aloficocianina no ponto de máxima atividade volumétrica, 65,9 e 82,2 µg/mL, respectivamente. A enzima extraída da biomassa de S. platensis LEB 52 catalisou a hidratação do CO2 que precipitou na forma de CaCO3. Maiores rendimentos de extração da enzima a partir das microalgas P. tricornutum e S. sp. LEB 18 foram obtidos utilizando homogeneizador ultrassônico, que foram 31,3 U/g e 25,5 U/g, respectivamente. A biomassa de S. sp. LEB 18, também apresentou potencial para a extração de ficobiliproteínas, obtendo- se altas concentrações de C-ficocianina (100,5 mg/g) e aloficocianina (69,9 mg/g). Através dos resultados obtidos, pode-se verificar a potencialidade das microalgas e das cianobactérias para produção da enzima anidrase carbônica e das ficobiliproteínas, biomoléculas de alto valor industrial. Este trabalho apresenta processos eficientes para a extração da enzima e de ficobiliproteínas tanto para escala laboratorial como industrial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carotenoids prevent different degenerative diseases and improve human health. Microalgae are commercially exploited for carotenoids, including astaxanthin and β-carotene. Two commercially important microalgae, Dunaliella salina and Tetraselmis suecica, were treated with plant hormones salicylic acid (SA) and methyl jasmonate (MJ), or by UV-C radiation (T. suecica only) and a combination thereof. Significant increases in total carotenoids were found for D. salina and T. suecica after treatment with MJ (10 μmol/L) and SA (70–250 μmol/L), respectively. T. suecica also had significant increases in total carotenoids following UV-C radiation compared to control cultures. Among the carotenoids, lutein was the highest induced carotenoid. A combination of these two treatments also showed a significant increase in total carotenoids and lutein for T. suecica, when compared to controls. Plant hormones and UV-C radiation may be useful tools for increasing carotenoid accumulation in green microalgae although the responses are species- and dose-specific and should be trialed in medium to large scale to explore commercial production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在成功养殖杜氏盐藻(Dunaliella salina)的基础上,采用Takara cDNA文库构建试剂盒,构建盐胁迫下(1.5 mol/L NaCl)杜氏盐藻的cDNA文库.经鉴定,原始文库的滴度达1.2×106cfu/mL,重组率高达95%,且多数插入片段均在500 bp以上.对表达序列标签(expressed sequence tag,EST)分析发现,杜氏盐藻基因组中包含大量未鉴定的新基因.随机挑取60个单克隆进行序列测定,将所测序列经Blast比对等生物信息学方法分析后,发现其中三分之一,即20

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we chronicle the establishment of a novel transformation system for the unicellular marine green alga, Dunaliella salina. We introduced the CaMV35S promoter-GUS construct into D. saliva with a PDS1000/He micro-particle bombardment system. Forty eight h after transformation, via histochemical staining, we observed the transient expression of GUS in D. salina cells which had been bombarded under rupture-disc pressures of 450 psi and 900 psi. We observed no GUS activity in either the negative or the blank controls. Our findings indicated that the micro-particle bombardment method constituted a feasible approach to the genetic transformation of D. salina. We also conducted tests of the cells' sensitivity to seven antibiotics and one herbicide, and our results suggested that 20 mu g/ ml of Basta could inhibit cell growth completely. The bar gene, which encodes for phosphinothricin acetyltransferase and confers herbicide tolerance, was introduced into the cells via the above established method. The results of PCR and PCR-Southern blot analyses indicated that the gene was successfully integrated into the genome of the transformants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para el estudio de la microalga Dunaliella salina Teodoresco, se colectaron muestras de 2 lagunas hipersalinas; las Salinas de Chimus y las Salinas de Chilca. La metodología usada fue la técnica de micropipeta, tratamiento con antibiótico y la técnica de sedimentación algal, obteniendo cultivos unialgales y axénicos. El medio usado fue medio Johnson modificado en agua de mar, utilizado concentraciones de NaCl (1 – 5M), éste permitió evaluar el crecimiento, densidad y velocidad algal a través de conteo en cámara de Newbahuer y lecturas de absorvancia en espectrofotómetro. La relación entre los métodos de conteo, se realizó con el análisis de regresión potencial. Las mejores densidades algales se observaron en cultivo de concentraciones 1M, 1,5M y 3,5M de NaCl, para las cepas de las salinas de Chimus y Chilca. La mayor densidad algal ( 4,603 x 106 cels. ml-1 equivalente al 56.4 % para la cepa de Chimus) se observó en el cultivo de 1,5M de NaCl. La velocidad de crecimiento durante la fase exponencial para ambas cepas, estuvieron entre 0,56-0,83 div. día-1, con un Td de 29-43 horas, en cámara de Newbahuer como en espectrofotómetro y a las mismas concentraciones de cultivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under stress conditions such as high light intensity or nutrient starvation, cells of the unicellular alga Dunaliella bardawil overproduce β-carotene, which is accumulated in the plastids in newly formed triacylglycerol droplets. We report here that the formation of these sequestering structures and β-carotene are interdependent. When the synthesis of triacylglycerol is blocked, the overproduction of β-carotene is also inhibited. During overproduction of β-carotene no up-regulation of phytoene synthase or phytoene desaturase is observed on the transcriptional or translational level, whereas at the same time acetyl-CoA carboxylase, the key regulatory enzyme of acyl lipid biosynthesis, is increased, at least in its enzymatic activity. We conclude that under normal conditions the carotenogenic pathway is not maximally active and may be appreciably stimulated in the presence of sequestering structures, creating a plastid-localized sink for the end product of the carotenoid biosynthetic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between photosynthetic and non-photosynthetic microorganisms play an essential role in natural aquatic environments and the contribution of bacteria and microalgae to the nitrogen cycle can lead to both competitive and mutualistic relationships. Nitrogen is considered to be, with phosphorus and iron, one of the main limiting nutrients for primary production in the oceans and its availability experiences large temporal and geographical variations. For these reasons, it is important to understand how competitive and mutualistic interactions between photosynthetic and heterotrophic microorganisms are impacted by nitrogen limitation. In a previous study performed in batch cultures, the addition of a selected bacterial strain of Alteromonas sp. resulted in a final biomass increase in the green alga Dunaliella sp. as a result of higher nitrogen incorporation into the algal cells. The present work focuses on testing the potential of the same microalgae–bacteria association and nitrogen interactions in chemostats limited by nitrogen. Axenic and mixed cultures were compared at two dilution rates to evaluate the impact of nitrogen limitation on interactions. The addition of bacteria resulted in increased cell size in the microalgae, as well as decreased carbon incorporation, which was exacerbated by high nitrogen limitation. Biochemical analyses for the different components including microalgae, bacteria, non-living particulate matter, and dissolved organic matter, suggested that bacteria uptake carbon from carbon-rich particulate matter released by microalgae. Dissolved organic nitrogen released by microalgae was apparently not taken up by bacteria, which casts doubt on the remineralization of dissolved organic nitrogen by Alteromonas sp. in chemostats. Dunaliella sp. obtained ammonium-nitrogen more efficiently under lower nitrogen limitation. Overall, we revealed competition between microalgae and bacteria for ammonium when this was in continuous but limited supply. Competition for mineral nitrogen increased with nitrogen limitation. From our study we suggest that competitive or mutualistic relationships between microalgae and bacteria largely depend on the ecophysiological status of the two microorganisms. The outcome of microalgae–bacteria interactions in natural and artificial ecosystems largely depends on environmental factors. Our results indicate the need to improve understanding of the interaction/s between these microbial players