988 resultados para dual-scale
Resumo:
A new dualscale modelling approach is presented for simulating the drying of a wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of wood at low temperatures and is valid in the so-called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the microscopic field using suitably-defined periodic boundary conditions, which allows the macroscopic mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale but reduces to a classical homogenisation approach if a linear relationship is assumed between the microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential and flexibility of the new dual-scale approach. In particular, for a given unit cell configuration it is not necessary to propose the form of the macroscopic fluxes prior to the simulations because these are determined as a direct result of the dual-scale formulation.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
A dual-scale model of the torrefaction of wood was developed and used to study industrial configurations. At the local scale, the computational code solves the coupled heat and mass transfer and the thermal degradation mechanisms of the wood components. At the global scale, the two-way coupling between the boards and the stack channels is treated as an integral component of the process. This model is used to investigate the effect of the stack configuration on the heat treatment of the boards. The simulations highlight that the exothermic reactions occurring in each single board can be accumulated along the stack. This phenomenon may result in a dramatic eterogeneity of the process and poses a serious risk of thermal runaway, which is often observed in industrial plants. The model is used to explain how thermal runaway can be lowered by increasing the airflow velocity, the sticker thickness or by gas flow reversal.
Resumo:
A numerical approach for coupling the temperature and concentration fields using a micro/macro dual scale model for a solidification problem is presented. The dual scale modeling framework is implemented on a hybrid explicit-implicit solidification scheme. The advantage of this model lies in more accurate consideration of microsegregation occurring at micro-scale using a subgrid model. The model is applied to the case of solidification of a Pb-40% Sn alloy in a rectangular cavity. The present simulation results are compared with the corresponding experimental results reported in the literature, showing improvement in macrosegregation predictions. Subsequently, a comparison of macrosegregation prediction between the results of the present method with those of a parameter model is performed, showing similar trends.
Resumo:
A composite film composed of porous polyurethane (PU) and polystyrene (PS) microspheres with both superhydrophobicity and superoleophilicity has been prepared. In this film, the dual-scale structure enhances both the hydrophobicity and oleophilicity of the surface material. The composite film with such an 'intelligent' wettability property can be utilized to separate oil and water systems efficiently.
Resumo:
In specific solid-state materials, under the right conditions, collections of magnetic dipoles are known to spontaneously form into a variety of rather complex geometrical patterns, exemplified by vortex and skyrmion structures. While theoretically, similar patterns should be expected to form from electrical dipoles, they have not been clearly observed to date: the need for continued experimental exploration is therefore clear. In this Letter we report the discovery of a rather complex domain arrangement that has spontaneously formed along the edges of a thin single crystal ferroelectric sheet, due to surface-related depolarizing fields. Polarization patterns are such that nanoscale “flux-closure” loops are nested within a larger mesoscale flux closure object. Despite the orders of magnitude differences in size, the geometric forms of the dual-scale flux closure entities are rather similar.
Resumo:
During the last years great effort has been devoted to the fabrication of superhydrophobic surfaces because of their self-cleaning properties. A water drop on a superhydrophobic surface rolls off even at inclinations of only a few degrees while taking up contaminants encountered on its way. rnSuperhydrophobic, self-cleaning coatings are desirable for convenient and cost-effective maintenance of a variety of surfaces. Ideally, such coatings should be easy to make and apply, mechanically resistant, and long-term stable. None of the existing methods have yet mastered the challenge of meeting all of these criteria.rnSuperhydrophobicity is associated with surface roughness. The lotus leave, with its dual scale roughness, is one of the most efficient examples of superhydrophobic surface. This thesis work proposes a novel technique to prepare superhydrophobic surfaces that introduces the two length scale roughness by growing silica particles (~100 nm in diameter) onto micrometer-sized polystyrene particles using the well-established Stöber synthesis. Mechanical resistance is conferred to the resulting “raspberries” by the synthesis of a thin silica shell on their surface. Besides of being easy to make and handle, these particles offer the possibility for improving suitability or technical applications: since they disperse in water, multi-layers can be prepared on substrates by simple drop casting even on surfaces with grooves and slots. The solution of the main problem – stabilizing the multilayer – also lies in the design of the particles: the shells – although mechanically stable – are porous enough to allow for leakage of polystyrene from the core. Under tetrahydrofuran vapor polystyrene bridges form between the particles that render the multilayer-film stable. rnMulti-layers are good candidate to design surfaces whose roughness is preserved after scratch. If the top-most layer is removed, the roughness can still be ensured by the underlying layer.rnAfter hydrophobization by chemical vapor deposition (CVD) of a semi-fluorinated silane, the surfaces are superhydrophobic with a tilting angle of a few degrees. rnrnrn
Resumo:
Dual-mode vibration of nanowires has been reported experimentally through actuation of the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation direction is deviated from the two principal axes of inertia. The predictions of the two first mode natural frequencies by the classical beam model appear underestimated comparing with the MD results, which are found to be enhanced by the discrete model. Particularly, the predictions by the beam theory with the contribution of surface effects are uniformly larger than the classical beam model, which exhibit better agreement with MD results for larger cross-sectional size. However, for ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, for all different cross-sections, the inclusion of surface effects is found to reduce the difference between the two first mode natural frequencies. This trend is observed consistent with MD results. This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam.
Resumo:
We consider the problem of controlling a Markov decision process (MDP) with a large state space, so as to minimize average cost. Since it is intractable to compete with the optimal policy for large scale problems, we pursue the more modest goal of competing with a low-dimensional family of policies. We use the dual linear programming formulation of the MDP average cost problem, in which the variable is a stationary distribution over state-action pairs, and we consider a neighborhood of a low-dimensional subset of the set of stationary distributions (defined in terms of state-action features) as the comparison class. We propose a technique based on stochastic convex optimization and give bounds that show that the performance of our algorithm approaches the best achievable by any policy in the comparison class. Most importantly, this result depends on the size of the comparison class, but not on the size of the state space. Preliminary experiments show the effectiveness of the proposed algorithm in a queuing application.
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
In many real world prediction problems the output is a structured object like a sequence or a tree or a graph. Such problems range from natural language processing to compu- tational biology or computer vision and have been tackled using algorithms, referred to as structured output learning algorithms. We consider the problem of structured classifi- cation. In the last few years, large margin classifiers like sup-port vector machines (SVMs) have shown much promise for structured output learning. The related optimization prob -lem is a convex quadratic program (QP) with a large num-ber of constraints, which makes the problem intractable for large data sets. This paper proposes a fast sequential dual method (SDM) for structural SVMs. The method makes re-peated passes over the training set and optimizes the dual variables associated with one example at a time. The use of additional heuristics makes the proposed method more efficient. We present an extensive empirical evaluation of the proposed method on several sequence learning problems.Our experiments on large data sets demonstrate that the proposed method is an order of magnitude faster than state of the art methods like cutting-plane method and stochastic gradient descent method (SGD). Further, SDM reaches steady state generalization performance faster than the SGD method. The proposed SDM is thus a useful alternative for large scale structured output learning.
Resumo:
Elastic Net Regularizers have shown much promise in designing sparse classifiers for linear classification. In this work, we propose an alternating optimization approach to solve the dual problems of elastic net regularized linear classification Support Vector Machines (SVMs) and logistic regression (LR). One of the sub-problems turns out to be a simple projection. The other sub-problem can be solved using dual coordinate descent methods developed for non-sparse L2-regularized linear SVMs and LR, without altering their iteration complexity and convergence properties. Experiments on very large datasets indicate that the proposed dual coordinate descent - projection (DCD-P) methods are fast and achieve comparable generalization performance after the first pass through the data, with extremely sparse models.