886 resultados para dual-energy X-ray absorptometry
Resumo:
OBJECTIVE: To use magnetic resonance imaging (MRI) to validate estimates of muscle and adipose tissue (AT) in lower limb sections obtained by dual-energy X-ray absorptiometry (DXA) modelling. DESIGN: MRI measurements were used as reference for validating limb muscle and AT estimates obtained by DXA models that assume fat-free soft tissue (FFST) comprised mainly muscle: model A accounted for bone hydration only; model B also applied constants for FFST in bone and skin and fat in muscle and AT; model C was as model B but allowing for variable fat in muscle and AT. SUBJECTS: Healthy men (n = 8) and women (n = 8), ages 41 - 62 y; mean (s.d.) body mass indices (BMIs) of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m2, respectively. MEASUREMENTS: MRI scans of the legs and whole body DXA scans were analysed for muscle and AT content of thigh (20 cm) and lower leg (10 cm) sections; 24 h creatinine excretion was measured. RESULTS: Model A overestimated thigh muscle volume (MRI mean, 2.3 l) substantially (bias 0.36 l), whereas model B underestimated it by only 2% (bias 0.045 l). Lower leg muscle (MRI mean, 0.6 l) was better predicted using model A (bias 0.04 l, 7% overestimate) than model B (bias 0.1 l, 17% underestimate). The 95% limits of agreement were high for these models (thigh,+/- 20%; lower leg,+/- 47%). Model C predictions were more discrepant than those of model B. There was generally less agreement between MRI and all DXA models for AT. Measurement variability was generally less for DXA measurements of FFST (coefficient of variation 0.7 - 1.8%) and fat (0.8 - 3.3%) than model B estimates of muscle (0.5-2.6%) and AT (3.3 - 6.8%), respectively. Despite strong relationships between them, muscle mass was overestimated by creatinine excretion with highly variable predictability. CONCLUSION: This study has shown the value of DXA models for assessment of muscle and AT in leg sections, but suggests the need to re-evaluate some of the assumptions upon which they are based.
Resumo:
The prevention and treatment of diseases related to changes in body composition require accurate methods for the measurement of body composition. However, few studies have dealt specifically with the assessment of body composition of undernourished older subjects by different methodologies. To assess the body composition of undernourished older subjects by two different methods, dual energy x-ray absorptiometry (DXA) and bioelectric impedance (BIA), and to compare results with those of an eutrophic group. The study model was cross-sectional; the study was performed at the University Hospital of the School of Medicine of Ribeiro Preto, University of So Paulo, Brazil. Forty-one male volunteers aged 62 to 91 years. The groups were selected on the basis of anamnesis, physical examination and nutritional assessment according to the Mini Nutritional Assessment (MNA) score. Body composition was assessed by DXA and BIA. Body weight, arm and calf circumference, body mass index (BMI), fat free mass (FFM) and fat mass (FM) were significantly lower in the undernourished group as compared to the eutrophic group. There were no significant differences between FFM and FM mean values determined by DXA and BIA in both groups, but the agreement between methods in the undernourished group was less strong. Our results suggest caution when BIA is to be applied in studies including undernourished older subjects. This study does not support BIA as an accurate method for the individual assessment of body composition.
Resumo:
The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at L1-L4 between 45 and 90 yr of age (vs. -2.34 for aBMD). Microarchitectural loss rate increased after age 65 by 50% (-0.004 to -0.006). Similar results were obtained for other combinations of lumbar vertebra. TBS, an index of bone microarchitectural texture, decreases with advancing age in non-Hispanic US white women. Little change in TBS is observed between ages 30 and 45. Thereafter, a progressive decrease is observed with advancing age. The changes we observed in these American women are similar to that previously reported for a French population of white women (r(2) > 0.99). This reference database will facilitate the use of TBS to assess bone microarchitectural deterioration in clinical practice.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.
Resumo:
Peripheral assessment of bone density using photon absorptiometry techniques has been available for over 40 yr. The initial use of radio-isotopes as the photon source has been replaced by the use of X-ray technology. A wide variety of models of single- or dual-energy X-ray measurement tools have been made available for purchase, although not all are still commercially available. The Official Positions of the International Society for Clinical Densitometry (ISCD) have been developed following a systematic review of the literature by an ISCD task force and a subsequent Position Development Conference. These cover the technological diversity among peripheral dual-energy X-ray absorptiometry (pDXA) devices; define whether pDXA can be used for fracture risk assessment and/or to diagnose osteoporosis; examine whether pDXA can be used to initiate treatment and/or monitor treatment; provide recommendations for pDXA reporting; and review quality assurance and quality control necessary for effective use of pDXA.
Resumo:
Introduction: Growth is a central process in paediatrics. Weight and height evaluation are therefore routine exams for every child but in some situation, particularly inflammatory bowel disease (IBD), a wider evaluation of nutritional status needs to be performed. Objectives: To assess the accuracy of bio-impedance analysis (BIA) compared to the gold standard dual energy X-ray absorptiometry (DEXA) in estimating percentage body fat (fat mass; FM) and lean body mass (fat free mass; FFM) in children with inflammatory bowel disease (IBD). To compare FM and FFM levels between patients with IBD and healthy controls. Methods: Twenty-nine healthy controls (12 females; mean age: 12.7 ± 1.9 years) and 21 patients (11 females; 14.3 ± 1.3 years) were recruited from August 2011 to October 2012 at our institution. BIA was performed in all children and DEXA in patients only. Concordance between BIA and DEXA was assessed using Lin's concordance correlation and the Bland-Altman method. Between-group comparisons were made using analysis of variance adjusting for age. Results: BIA-derived FM% showed a good concordance with DEXA-derived values, while BIA-derived FFM% tended to be slightly higher than DEXA-derived values (table). No differences were found between patients and controls regarding body mass index (mean ± SD: 19.3 ± 3.3 vs. 20.1 ± 2.8 kg/m2, respectively; age-adjusted P = 0.08) and FM% (boys: 25.3 ± 10.2 vs. 22.6 ± 7.1%, for patients and controls, respectively; P = 0.20; girls: 28.2 ± 5.7 vs. 26.4 ± 7.7%; P = 0.91). Also, no differences were found regarding FFM% in boys (74.9 ± 10.2 vs. 77.4 ± 7.1%; P = 0.22) and girls (71.8 ± 5.6 vs. 73.5 ± 7.7%; P = 0.85). Conclusion: BIA adequately assesses body composition (FM%) in children with IBD and could advantageously replace DEXA, which is more expensive and less available. No differences in body composition were found between children with IBD and healthy controls.
Resumo:
Vertebral fracture assessments (VFAs) using dual-energy X-ray absorptiometry increase vertebral fracture detection in clinical practice and are highly reproducible. Measures of reproducibility are dependent on the frequency and distribution of the event. The aim of this study was to compare 2 reproducibility measures, reliability and agreement, in VFA readings in both a population-based and a clinical cohort. We measured agreement and reliability by uniform kappa and Cohen's kappa for vertebral reading and fracture identification: 360 VFAs from a population-based cohort and 85 from a clinical cohort. In the population-based cohort, 12% of vertebrae were unreadable. Vertebral fracture prevalence ranged from 3% to 4%. Inter-reader and intrareader reliability with Cohen's kappa was fair to good (0.35-0.71 and 0.36-0.74, respectively), with good inter-reader and intrareader agreement by uniform kappa (0.74-0.98 and 0.76-0.99, respectively). In the clinical cohort, 15% of vertebrae were unreadable, and vertebral fracture prevalence ranged from 7.6% to 8.1%. Inter-reader reliability was moderate to good (0.43-0.71), and the agreement was good (0.68-0.91). In clinical situations, the levels of reproducibility measured by the 2 kappa statistics are concordant, so that either could be used to measure agreement and reliability. However, if events are rare, as in a population-based cohort, we recommend evaluating reproducibility using the uniform kappa, as Cohen's kappa may be less accurate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Il crescente utilizzo di sistemi di analisi high-throughput per lo studio dello stato fisiologico e metabolico del corpo, ha evidenziato che una corretta alimentazione e una buona forma fisica siano fattori chiave per la salute. L'aumento dell'età media della popolazione evidenzia l'importanza delle strategie di contrasto delle patologie legate all'invecchiamento. Una dieta sana è il primo mezzo di prevenzione per molte patologie, pertanto capire come il cibo influisce sul corpo umano è di fondamentale importanza. In questo lavoro di tesi abbiamo affrontato la caratterizzazione dei sistemi di imaging radiografico Dual-energy X-ray Absorptiometry (DXA). Dopo aver stabilito una metodologia adatta per l'elaborazione di dati DXA su un gruppo di soggetti sani non obesi, la PCA ha evidenziato alcune proprietà emergenti dall'interpretazione delle componenti principali in termini delle variabili di composizione corporea restituite dalla DXA. Le prime componenti sono associabili ad indici macroscopici di descrizione corporea (come BMI e WHR). Queste componenti sono sorprendentemente stabili al variare dello status dei soggetti in età, sesso e nazionalità. Dati di analisi metabolica, ottenuti tramite Magnetic Resonance Spectroscopy (MRS) su campioni di urina, sono disponibili per circa mille anziani (provenienti da cinque paesi europei) di età compresa tra i 65 ed i 79 anni, non affetti da patologie gravi. I dati di composizione corporea sono altresì presenti per questi soggetti. L'algoritmo di Non-negative Matrix Factorization (NMF) è stato utilizzato per esprimere gli spettri MRS come combinazione di fattori di base interpretabili come singoli metaboliti. I fattori trovati sono stabili, quindi spettri metabolici di soggetti sono composti dallo stesso pattern di metaboliti indipendentemente dalla nazionalità. Attraverso un'analisi a singolo cieco sono stati trovati alti valori di correlazione tra le variabili di composizione corporea e lo stato metabolico dei soggetti. Ciò suggerisce la possibilità di derivare la composizione corporea dei soggetti a partire dal loro stato metabolico.
Resumo:
In the first part of this methodological study eleven metacarpi of 9 skeletally normal horses were examined from 4 directions by dual energy x-ray absorptiometry (DXA). The differences between the dorsopalmar-palmarodorsal and lateromedial-mediolateral (opposite sites) bone mineral density (BMD) values were found to be nonsignificant. In the second part of the study the precision of the Norland XR-26 densitometer was tested by measuring 34 metacarpal bones and 34 proximal phalanges, each of them three times, from a single direction. The difference between the individual measurements of the first phalanges and of the metacarpal bones originating from the right or the left side of the same horse were not significant, nor did the age or breed have a significant effect on BMD or bone mineral content (BMC). However, both BMD and BMC are greater in the metacarpal bones than in the proximal phalanges and are higher in geldings than in mares or to stallions, while the BMD or BMC values of mares and stallions did not differ from each other significantly. These data point to the necessity of further BMD studies in a higher number of patients.