988 resultados para dual active bridge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-active bridges (DABs) can be used to deliver isolated and bidirectional power to electric vehicles (EVs) or to the grid in vehicle-to-grid (V2G) applications. However, such a system essentially requires a two-stage power conversion process, which significantly increases the power losses. Furthermore, the poor power factor associated with DAB converters further reduces the efficiency of such systems. This paper proposes a novel matrix converter based resonant DAB converter that requires only a single-stage power conversion process to facilitate isolated bi-directional power transfer between EVs and the grid. The proposed converter comprises a matrix converter based front end linked with an EV side full-bridge converter through a high frequency isolation transformer and a tuned LCL network. A mathematical model, which predicts the behavior of the proposed system, is presented to show that both the magnitude and direction of the power flow can be controlled through either relative phase angle or magnitude modulation of voltages produced by converters. Viability of the proposed concept is verified through simulations. The proposed matrix converter based DAB, with a single power conversion stage, is low in cost, and suites charging and discharging in single or multiple EVs or V2G applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a linear large signal state-space model for a phase controlled CLC (Capacitor Inductor Capacitor) Resonant Dual Active Bridge (RDAB). The proposed model is useful for fast simulation and for the estimation of state variables under large signal variation. The model is also useful for control design because the slow changing dynamics of the dq variables are relatively easy to control. Simulation results of the proposed model are presented and compared to the simulated circuit model to demonstrate the proposed model's accuracy. This proposed model was used for the design of a Proportional-Integral (PI) controller and it has been implemented in the circuit simulation to show the proposed models usefulness in control design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel modulation strategy for a phase controlled Capacitor-Inductor-Capacitor (CLC) Resonant Dual Active Bridge (RDAB). The proposed modulation strategy improves the soft turn-on, Zero-Current-Switching (ZCS) and Zero-Voltage-Switching (ZVS) range of the converter while only minimally increasing the required reactive currents in the ac link. A mathematical analysis of the proposed modulation scheme is presented along with a theoretical loss comparison between several modulation strategies. The proposed modulation strategy was implemented and the experimental results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power density is strongly preferable for the on-board battery charger of Plug-in Hybrid Electric Vehicle (PHEV). Wide band gap devices, such as Gallium Nitride HEMTs are being explored to push to higher switching frequency and reduce passive component size. In this case, the bulk DC link capacitor of AC-DC Power Factor Correction (PFC) stage, which is usually necessary to store ripple power of two times the line frequency in a DC current charging system, becomes a major barrier on power density. If low frequency ripple is allowed in the battery, the DC link capacitance can be significantly reduced. This paper focuses on the operation of a battery charging system, which is comprised of one Full Bridge (FB) AC-DC stage and one Dual Active Bridge (DAB) DC-DC stage, with charging current containing low frequency ripple at two times line frequency, designated as sinusoidal charging. DAB operation under sinusoidal charging is investigated. Two types of control schemes are proposed and implemented in an experimental prototype. It is proved that closed loop current control is the better. Full system test including both FB AC-DC stage and DAB DC-DC stage verified the concept of sinusoidal charging, which may lead to potentially very high power density battery charger for PHEV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bidirectional DC-DC converters are widely used in different applications such as energy storage systems, Electric Vehicles (EVs), UPS, etc. In particular, future EVs require bidirectional power flow in order to integrate energy storage units into smart grids. These bidirectional power converters provide Grid to Vehicle (V2G)/ Vehicle to Grid (G2V) power flow capability for future EVs. Generally, there are two control loops used for bidirectional DC-DC converters: The inner current loop and The outer loop. The control of DAB converters used in EVs are proved to be challenging due to the wide range of operating conditions and non-linear behavior of the converter. In this thesis, the precise mathematical model of the converter is derived and non-linear control schemes are proposed for the control system of bidirectional DC-DC converters based on the derived model. The proposed inner current control technique is developed based on a novel Geometric-Sequence Control (GSC) approach. The proposed control technique offers significantly improved performance as compared to one for conventional control approaches. The proposed technique utilizes a simple control algorithm which saves on the computational resources. Therefore, it has higher reliability, which is essential in this application. Although, the proposed control technique is based on the mathematical model of the converter, its robustness against parameter uncertainties is proven. Three different control modes for charging the traction batteries in EVs are investigated in this thesis: the voltage mode control, the current mode control, and the power mode control. The outer loop control is determined by each of the three control modes. The structure of the outer control loop provides the current reference for the inner current loop. Comprehensive computer simulations have been conducted in order to evaluate the performance of the proposed control methods. In addition, the proposed control have been verified on a 3.3 kW experimental prototype. Simulation and experimental results show the superior performance of the proposed control techniques over the conventional ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an adaptive control for the auxiliary circuit, called ARCN (Auxiliary Resonant Commutating Network), used to achieve ZVS in full active bridge converters under a wide load range. Depending on the load conditions, the proposed control adapts the timing of the ARCN to minimize the losses. The principle of operation and implementation considerations are presented for a three phase full active bridge converter, proposing different methods to implement the control according to the specifications. The experimental results shown verify the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la actualidad se está desarrollando la electrónica para el diseño de sistemas de conversión de potencia de alta frecuencia, que reduce notablemente el peso y el ruido de los dispositivos convertidores y aumenta a su vez la densidad de potencia sin afectar negativamente al rendimiento, coste o fiabilidad de dichos dispositivos. La disciplina que se encarga de investigar y crear estos sistemas es la electrónica de potencia. Este documento recoge la metodología empleada para el diseño, análisis y simulación de un convertidor DC/DC de 10 kW de aplicación aeronáutica. Este dispositivo forma parte de un proyecto en el que colaboran el Centro de Electrónica Industrial de la Universidad Politécnica de Madrid (CEI - UPM) y las empresas Indra y Airbus. Su objetivo es el diseño y construcción de un rectificador trifásico que proporcione una salida continua de 28 V y 10 kW de potencia. Durante su aplicación final, se dispondrá de dos dispositivos idénticos al diseñado en este proyecto, aportando cada uno de ellos 5 kW, sin embargo, debido a la importancia en seguridad en las aplicaciones aeronáuticas, cada rectificador debe ser capaz de aportar 10 kW de potencia en caso de fallo en uno de ellos. En primer lugar, este trabajo explica el diseño elegido para dicho convertidor, que sigue una topología Dual Active Bridge (DAB), en creciente interés para el desarrollo de dispositivos de potencia en alta frecuencia por sus mejoras en eficiencia y densidad de potencia. Esta topología consiste en dos puentes completos de dispositivos de conmutación, en este caso MOSFET, con un transformador entre medias diseñado para proporcionar la tensión de salida deseada. La topología ha sido modificada para satisfacer especificaciones del proyecto y cumplir las expectativas del diseño preliminar, que se centra en la transición suave de corriente en el transformador, siendo clave el diseño de un filtro resonante en serie con el transformador que proporciona una corriente senoidal con valor nulo en los instantes de conmutación de los MOSFET. Una vez introducida la topología, el siguiente capítulo se centra en el procedimiento de selección de componentes internos del convertidor: destacando el análisis de condensadores y MOSFET. Para su selección, se han estudiado las exigencias eléctricas en los puntos en los que estarán instalados, conociendo así las tensiones y corrientes que deberán soportar. Para asegurar un diseño seguro, los componentes han sido seleccionados de forma que durante su funcionamiento se les exija como máximo el 70% de sus capacidades eléctricas y físicas. Además, a partir de los datos aportados por los fabricantes ha sido posible estimar las pérdidas durante su funcionamiento. Este proyecto tiene un enfoque de aplicación aeronáutica, lo que exige un diseño robusto y seguro, que debe garantizar una detección rápida de fallos, de modo que sea capaz de aislar la anomalía de forma eficaz y no se propague a otros componentes del dispositivo. Para asegurarlo, se ha realizado la selección de sensores de tensión y corriente, que permiten la detección de fallos y la monitorización del convertidor. Al final de este apartado se muestra el esquema de alimentación, se analiza el consumo de los MOSFET y los sensores y se recopilan las pérdidas estimadas por los componentes internos del convertidor. Una vez terminado el diseño y selección de componentes, se muestran las simulaciones realizadas para prever el comportamiento del convertidor. Se presenta el modelo construido y las modificaciones instaladas para las diferentes simulaciones. Se destacan el diseño del regulador que introduce la entrada de corriente del convertidor para analizar su arranque, la construcción de una máquina de estados para analizar la detección de tensiones y corrientes fuera del intervalo correspondiente del correcto funcionamiento, y el modelo de MOSFET para simular los fallos posibles en estos dispositivos. También se analiza la influencia de la oscilación de la carga en los valores de tensión y en la resonancia del convertidor. Tras la simulación del equipo se describen las pruebas realizadas en los componentes magnéticos construidos dentro del periodo de elaboración de este trabajo: el transformador y la bobina externa, diseñada para mejorar el filtro resonante. La etapa final de este trabajo se ha centrado en la elaboración de un código de generación de señales PWM que controlen el funcionamiento de los MOSFET. Para esto se ha programado una tarjeta de control del procesador digital de señales (DSP)Delfino (TMS320F28335) instalado en una placa de experimentación (TMS320C2000), desarrollado por la empresa Texas Instruments, que facilita el acceso a los terminales GPIO y ADC del DSP durante el desarrollo del código, anexo a este documento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the design of high-efficient DC-DC converters based on WBG power devices. The first objective is the development of an isolated bidirectional converter for the distribution network of future electrical aircrafts. A SiC-based Dual Active Bridge converter is designed and fabricated. Control strategies for individual and parallel operations are investigated and implemented into a FPGA platform. Experimental results on 1.2kW 270V/28V prototype are presented to confirm the proper behavior of the proposed solution. The second project belongs to the field of photovoltaic systems and aims to develop a three-port converter with multiple power elements interfacing capability. A GaN-based Triple Active Bridge has been designed, regarding both the controller and the hardware realization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. ^ Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. ^ In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new two-stage state feedback control design approach has been developed to monitor the voltage supplied to magnetorheological (MR) dampers for semi-active vibration control of the benchmark highway bridge. The first stage contains a primary controller, which provides the force required to obtain a desired closed-loop response of the system. In the second stage, an optimal dynamic inversion (ODI) approach has been developed to obtain the amount of voltage to be supplied to each of the MR dampers such that it provides the required force prescribed by the primary controller. ODI is formulated by optimization with dynamic inversion, such that an optimal voltage is supplied to each damper in a set. The proposed control design has been simulated for both phase-I and phase-II study of the recently developed benchmark highway bridge problem. The efficiency of the proposed controller is analyzed in terms of the performance indices defined in the benchmark problem definition. Simulation results demonstrate that the proposed approach generally reduces peak response quantities over those obtained from the sample semi-active controller, although some response quantities have been seen to be increasing. Overall, the proposed control approach is quite competitive as compared with the sample semi-active control approach.