973 resultados para dry meadows
Resumo:
Suomenlinna on yksi Helsingin suosituimmista matkailu- ja kulttuurinähtävyyksistä. Kustaanmiekan, samoin kuin koko Suomenlinnan luonto on muodostunut perinteisestä suomalaisesta saaristoluonnosta ja vuosisatojen saatossa paikalle tulleista linnoituksien kasvistosta. Saaren vaihtelevien elinympäristöjen johdosta alueen kasvillisuus on hyvin rikasta. Linnoituksien monet kasvilajit ovat tulleet tulokaskasveina eri puolilta Eurooppaa sekä Venäjältä. Suurin osa Suomenlinnan alueesta on kallioketoa ja tämän lisäksi myös valliketoa, joista molemmat kuuluvat suojeltaviin alueisiin. Kustaanmiekan niityillä kasvaa keto- ja paahdelajeja, kuten harvinaista ketonoidanlukkoa (Botrychium lunaria L.) sekä ketoneilikkaa (Dianthus deltoides L.). Tämän tutkimuksen ensisijaisena tarkoituksena oli kartoittaa Kustaanmiekan alueen kesäkauden 2009 ketokasvilajisto ja eri putkilokasvilajien runsaus. Tutkimuksessa selvitettiin myös maaperätekijöiden ja alueen hoitohistorian mahdollista vaikutusta ketokasvilajistoon. Tutkimuksessa kartoitettiin kymmenen eri kedon kasvillisuus Suomenlinnan Kustaanmiekan linnoitusalueella. Kedot sijaitsivat eri puolilla Kustaanmiekkaa, sellaisilla paikoilla, missä ketokasvillisuus oli runsainta. Maastotyöt suoritettiin kesä- ja heinäkuussa laskemalla jokaisen kedon ruutujen putkilokasvien peittävyydet sekä listaamalla ylös myös ruutujen ulkopuoliset kevät- ja loppukesän kukkijat touko- ja elokuussa. Maaperän ominaisuuksien määrittämiseksi otettiin kultakin kedolta pintamaanäytteet elokuussa. Muita tutkittuja muuttujia olivat maapinnan kaltevuus sekä sammalen, karikkeen, paljaan maan, kenttäkasvillisuuden pohjakerros ja kallion osuus tutkimusruuduilla. Ketojen kasvillisuuden keskimääräinen korkeus mitattiin kesä- ja heinäkuussa. Kasvistossa oli selviä eroavaisuuksia ketojen välillä. Kasvilajien määrä vaihteli ketojen kokonaislajimäärän ollessa 40-60 kasvilajia. Yhteensä kedoilta löytyi 120 eri putkilokasvilajia, joista useimmat kukkivat sekä kesä- että heinäkuussa. Ketojen kasvilajimäärä vaihteli yhdellä neliömetrillä 6,3-13,6 kasvilajiin, minkä lisäksi Shannon-Wienerin diversiteetti-indeksi vaihteli 1,4-2,3 arvon välillä. Yleisimpiä lajeja, joita kedoilla tavattiin, olivat muun muassa siankärsämö (Achillea millefolium L.), koiranheinä (Dactylis glomerata L.), juolavehnä (Elymus repens L.) ja hopeahanhikki (Potentilla argentea L.). Alueella kasvoi myös muutamia sotatulokaslajeja kuten harmiota (Berteroa incana L.), ukonpalkoa (Bunias orientalis L.) ja karvahorsmaa (Epilobium hirsutum L.). Maaperätekijöillä, kuten suurella fosforin pitoisuudella ei ollut vaikutusta kasvilajien määrään kedoilla. Vain maan pH ja johtoluku korreloivat positiivisesti ketojen kasvillisuuden korkeuden kanssa. Vaikka tulosten perusteella ketojen hoidolla ei ollut vaikutusta ketojen kasvillisuuden määrään, voidaan kuitenkin olettaa oikeanlaisen hoidon parantavan tyypillisten ketokasvien kilpailukykyä muita niittykasveja kohtaan.
Resumo:
Agri-environmental schemes have so far resulted in only minor positive implications for the biodiversity of agricultural environments, in contrast to what has been expected. Land-use intensification has decreased landscape heterogeneity and the amount of semi-natural habitats. Field margins are uncultivated areas of permanent vegetation located adjacent to fields. Since the number of these habitats is high, investing in their quality may result in more diverse agricultural landscapes. Field margins can be considered as multifunctional habitats providing agronomic, environmental and wildlife services. This thesis aimed at examining the plant communities of different types of field margin habitats and the factors affecting their species diversity and composition. The importance of edaphic, spatial and management factors was studied on regional, landscape and habitat scales. Vegetation surveys were conducted on regional and landscape scales and a field experiment on cutting management was conducted on a habitat scale. In field margin plant communities, species appeared to be indicators of high or intermediate soil fertility and moist soil conditions. The plant species diversity found was rather low, compared with most species-rich agricultural habitats in Finland, such as dry meadows. Among regions, land-use history, main production line, natural species and human induced distribution, climate and edaphic factors were elements inducing differences in species composition. The lowest regional species diversity of field margins was related to intensive and long-term cereal production. Management by cutting and removal or grazing had a positive effect on plant species diversity. The positive effect of cutting and removal on species richness was also dependent on the adjacent source of colonizing species. Therefore, in species-poor habitats and landscapes, establishment of margins with diverse seed mixtures can be recommended for enhancing the development of species richness. However, seed mixtures should include only native species preferably local origin. Management by cutting once a year for 5 years did not result in a decline in dominance of a harmful weed species, Elymus repens, showing that E. repens probably needs cutting more frequently than once per year. Agri-environmental schemes should include long-term contracts with farmers for the establishment, and management by cutting and removal or grazing, of field margins that are several metres wide. In such schemes, the timing and frequency of management should be planned so as not to harm other taxa, such as the insects and birds that are dependent on these habitats. All accidental herbicide drifts to field margins should be avoided when spraying the cultivated area to minimize the negative effects of sprayings on vegetation. The harmful effects of herbicides can be avoided by organic farming methods.
Resumo:
Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils.
Resumo:
Analysis of 141 seats of maned wolf Chrysocyon brachyurus collected in a region of upland forest and meadows of south-eastern Brazil yielded 351 food items in the wet season (60 seats) and 407 in the dry season (81 seats). Scarabaeidae and rodents were the most frequent animal food in both seasons, complemented by birds in the wet season and unidentified mammals in the dry season. Seeds revealed Solanum lycocarpum to be the most frequent plant food in the dry season and an Annonaceae and a Cactaceae the most frequent in the wet season. A total of 33 seed morphospecies were retrieved. Although our results reveal some shared and some divergent trends from dietary studies undertaken in savanna ('cerrado') areas, we found a very high frequency of potentially harmful tourists' garbage. This highlights the necessity for better environmental education and confirms that the maned wolf is a generalist and opportunist omnivore.
Resumo:
Low concentrations of herbicides (up to 70 ng 1(-1)), chiefly diuron (up to 50 ng 1 (-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-cast Queensland, Australia. Diuron and atrazine (up to 1. 1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng 1(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis. (c) 2004 Elsevier Ltd. All rights reserved.
Carbon and nutrient storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay
Resumo:
Seagrass meadows in Florida Bay and Shark Bay, contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared to 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL-1) than those from Florida Bay (0.84 ± 0.02 mg mL-1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha-1, lower than the average of 243.0 MgCorg ha-1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.
Resumo:
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using at. force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concns. and larger particle diams. (up to 5 μm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 0 0 1/0 2 0 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction.
Resumo:
A nutrient amendment experiment was conducted for two growing seasons in two alpine tundra communities to test the hypotheses that: (1) primary production is limited by nutrient availability, and (2) physiological and developmental constraints act to limit the responses of plants from a nutrient-poor community more than plants from a more nutrient-rich community to increases in nutrient availability. Experimental treatments consisted of N, P, and N+P amendments applied to plots in two physiognomically similar communities, dry and wet meadows. Extractable N and P from soils in nonfertilized control plots indicated that the wet meadow had higher N and P availability. Photosynthetic, nutrient uptake, and growth responses of the dominants in the two communities showed little difference in the relative capacity of these plants to respond to the nutrient additions. Aboveground production responses of the communities to the treatments indicated N availability was limiting to production in the dry meadow community while N and P availability colimited production in the wet meadow community. There was a greater production response to the N and N+P amendments in the dry meadow relative to the wet meadow, despite equivalent functional responses of the dominant species of both communities. The greater production response in the dry meadow was in part related to changes in community structure, with an increase in the proportion of graminoid and forb biomass, and a decrease in the proportion of community biomass made up by the dominant sedge Kobresia myosuroides. Species richness increased significantly in response to the N+P treatment in the dry meadow. Graminoid biomass increased significantly in the wet meadow N and N+P plots, while forb biomass decreased significantly, suggesting a competitive interaction for light. Thus, the difference in community response to nutrient amendments was not the result of functional changes at the leaf level of the dominant species, but rather was related to changes in community structure in the dry meadow, and to a shift from a nutrient to a light limitation of production in the wet meadow.
Resumo:
PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.