975 resultados para domestication and dispersa
Resumo:
The present study on the sustainability of medicinal plants in Kerala economic considerations in domestication and conservation of forest resources. There is worldwide consensus on the fact that medicinal plants are important not only in the local health support systems but in rural income and foreign exchange earnings. Sustainability of medicinal plants is important for the survival of forest dwellers, the forest ecosystem, conserving a heritage of human knowledge and overall development through linkages. More equitable sharing of the benefits from commercial utilization of the medicinal plants was found essential for the sustainability of the plants. Cultivation is very crucial for the sustainability of the sector. Through a direct tie-up with the industry, the societies can earn more income and repatriate better collection charges to its members. Cultivation should be carried out in wastelands, tiger reserves and in plantation forests. In short, the various players in the in the sector could find solution to their specific problems through co-operation and networking among them. They should rely on self-help rather than urging the government to take care of their needs. As far as the government is concerned, the forest department through checking over- exploitation of wild plants and the Agriculture Dept. through encouraging cultivation could contribute to the sustainable development of the medicinal plant sector.
Resumo:
The control of flowering is central to reproductive success in plants, and has a major impact on grain yield in crop species. The global importance of temperate cereal crops such as wheat and barley has meant emphasis has long been placed on understanding the genetics of flowering in order to enhance yield. Leads gained from the dissection of the molecular genetics of model species have combined with comparative genetic approaches, recently resulting in the isolation of the first flowering time genes in wheat and barley. This paper reviews the genetics and genes involved in cereal flowering pathways and the current understanding of how two of the principal genes, Vrn and Ppd, have been involved in domestication and adaptation to local environments, and the implications for future breeding programmes are discussed.
Resumo:
As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
中国古代涉及植物学的文献可谓浩如烟海。由于中国植物种类繁多,加之方言的分化和文字的演变,古籍文献中的植物名称难以计数。距古愈久,失误愈多,渐至名称混乱难以分辨,同物异名、同名异物现象比比皆是。植物考据在这样的背景下产生了。本文确立了中国植物考据研究的范围、内容、证据、方法和目的,并以时间为线索,梳理了中国植物考据研究两千多年的历史,扼要评介了各个历史阶段的代表人物及作品。在此基础上,本文遵循“由近及远,先实后虚”的研究思路,考证了《植物名实图考》的几种百合科植物,同时选定茄子这一栽培植物,以它为点,利用中国古籍文献证据,研究它在中国的起源、驯化和传播,藉此探讨植物考据研究所能解决的植物学问题。 1. 粉条儿菜和肺筋草考 理清了近百年来“粉条儿菜”和“肺筋草”这两个植物中文名称的混乱,确认粉条儿菜一名最早见于《救荒本草》,实为菊科Compositae鸦葱属Scorzonera华北鸦葱Scorzonera albicaulis;首次记载于《植物名实图考》中的“肺筋草”才是Aletris 属植物,应为Aletris scopulorum,非前人考证的Aletris spicata。 2. 黄精属植物考 《图考》“黄精”包括了多花黄精Polygonatum cyrtonema、长梗黄精P. filipes和距药黄精P. franchetii,这三个种实际上是一个集合种 (species aggregate), 即使用现代分类的观点来看,它们之间也很难从外部形态区分开来;“黄精苗”可能为P. sibiricum或P. verticillatum;认为“滇钩吻(一)”应为点花黄精P. punctatum,这与前人的考证结果相同;“滇钩吻(二)”和“滇黄精”可能分别为卷叶黄精P. cirrhifolium和滇黄精P. kingianum中的某个种,但限于黄精属植物分类研究的程度,暂且存疑;“萎蕤”图所绘植物不属于黄精属Polygonatum,而为万寿竹属Disporum的横脉万寿竹D.trabeculatum。 3. 贝母考 《图考》贝母条下所附贝母图,不属于贝母属Fritillaria植物,而属天南星科Araceae,可能为半夏Pinellia ternata的幼苗;文中“点苍山生者”可能是鸭趾草科蓝耳草Cyanotis vaga;“张子诗”中的蔓生贝母为Bolbostemma paniculatum,这可能是中国古代最早利用的“贝母”,后来逐渐被Fritillaria属植物替代。 4. 茄子的栽培起源和传播 本文首先借助于现代系统学和遗传学的研究结果,理清茄子及其近缘种的分类、地理分布和可能的驯化过程;结合民族植物学研究和大量的野外考察,确认了茄子及其近缘种在中国的形态、分布和利用方法等等;而后将今论古,用严格的考据方法理清在浩如烟海的中国古籍文献中与茄子相关文献的科学含义。在这个基础上推演茄子在中国栽培起源和传播的途径。得到以下结论:茄子的野生种GroupF和原始栽培种Group G在中国南方热带地区存在,早在晋代记载的“茄树”很可能就是这个原始栽培种Group G;高级栽培种Group H最早在公元前一世纪就有记载,有可能在中国四川盆地南部山区的暖温带地区被首先驯化;中国有些茄子的高级栽培种Group H也有可能从印度传来,但传播路线应该是沿着由南向北的西南丝绸之路,而非如一些学者所认为的自西向东由西北丝绸之路首先传入长安;在中国,茄子的高级栽培种由成都平原向长江中下游地区传播,继而在公元五到六世纪传播到黄河中下游地区,栽培技术已经成熟,利用方法越来越多, 到了宋代已经遍布整个中国;茄子在中国的选育是向着果实体积变大、味道变甜的方向进行, 宋代茄子发生了明显的品种分化,出现了世界上最早的茄子图。
Resumo:
Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
The forest tree species Khaya senegalensis (Desr.) A. Juss. occurs in a belt across 20 African countries from Senegal-Guinea to Sudan-Uganda where it is a highly important resource. However, it is listed as Vulnerable (IUCN 2015-3). Since introduction in northern Australia around 1959, the species has been planted widely, yielding high-value products. The total area of plantations of the species in Australia exceeds 15,000 ha, mostly planted in the Northern Territory since 2006, and includes substantial areas across 60-70 woodlots and industrial plantations established in north-eastern Queensland since the early-1990s and during 2005-2007 respectively. Collaborative conservation and tree improvement by governments began in the Northern Territory and Queensland in 2001 based on provenance and other trials of the 1960s-1970s. This work has developed a broad base of germplasm in clonal seed orchards, hedge gardens and trials (clone and progeny). Several of the trials were established collaboratively on private land. Since the mid-2000s, commercial growers have introduced large numbers of provenance-bulk and individual-tree seedlots to establish industrial plantations and trials, several of the latter in collaboration with the Queensland Government. Provenance bulks (>140) and families (>400) from 17 African countries are established in Australia, considered the largest genetic base of the species in a single country outside Africa. Recently the annual rate of industrial planting of the species in Australia has declined, and R&D has been suspended by governments and reduced by the private sector. However, new commercial plantings in the Northern Territory and Queensland are proposed. In domesticating a species, the strategic importance of a broad genetic base is well known. The wide range of first- and advanced-generation germplasm of the species established in northern Australia and documented in this paper provides a sound basis for further domestication and industrial plantation and woodlot expansion, when investment conditions are favourable
Resumo:
Darwin studied domesticated plants and animals to try to understand the causes of variability. He observed that variation is greatest in the part of the plant most used by humans, but explanations of the causes of this variation had to await the discovery of Mendelian genetics and subsequent advances in the understanding of the structure and mode of action of genes, from the one gene, one enzyme hypothesis to the role of transcriptional regulators. Darwin credited his studies on domesticated plants and animals with demonstrating to him the power of selection. He recognized two forms of human-mediated selection, methodical and unconscious, in addition to natural selection. Selection leaves a signature in the form of reduced diversity in genes that have been the targets of selection and in 'hitch-hiking' genomic regions linked to the target genes. These so-called selective sweeps may serve now to identify genes targeted by selection in early stages of domestication and thus provide a possible guide to crop improvement in future. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161, 203-212.
Resumo:
Observational evidence is scarce concerning the distribution of plant pathogen population sizes or densities as a function of time-scale or spatial scale. For wild pathosystems we can only get indirect evidence from evolutionary patterns and the consequences of biological invasions.We have little or no evidence bearing on extermination of hosts by pathogens, or successful escape of a host from a pathogen. Evidence over the last couple of centuries from crops suggest that the abundance of particular pathogens in the spectrum affecting a given host can vary hugely on decadal timescales. However, this may be an artefact of domestication and intensive cultivation. Host-pathogen dynamics can be formulated mathematically fairly easily–for example as SIR-type differential equation or difference equation models, and this has been the (successful) focus of recent work in crops. “Long-term” is then discussed in terms of the time taken to relax from a perturbation to the asymptotic state. However, both host and pathogen dynamics are driven by environmental factors as well as their mutual interactions, and both host and pathogen co-evolve, and evolve in response to external factors. We have virtually no information about the importance and natural role of higher trophic levels (hyperpathogens) and competitors, but they could also induce long-scale fluctuations in the abundance of pathogens on particular hosts. In wild pathosystems the host distribution cannot be modelled as either a uniform density or even a uniform distribution of fields (which could then be treated as individuals). Patterns of short term density-dependence and the detail of host distribution are therefore critical to long-term dynamics. Host density distributions are not usually scale-free, but are rarely uniform or clearly structured on a single scale. In a (multiply structured) metapopulation with coevolution and external disturbances it could well be the case that the time required to attain equilibrium (if it exists) based on conditions stable over a specified time-scale is longer than that time-scale. Alternatively, local equilibria may be reached fairly rapidly following perturbations but the meta-population equilibrium be attained very slowly. In either case, meta-stability on various time-scales is a more relevant than equilibrium concepts in explaining observed patterns.
Resumo:
Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 traitassociated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene Glyma15 g17480 (GmZTL3). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.