933 resultados para domain inversion


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major issue in the application of waveform inversion methods to crosshole georadar data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a time-domain waveform inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little-to-no trade-off between the wavelet estimation and the tomographic imaging procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Egger (2008) constructs some idealised experiments to test the usefulness of piecewise potential vorticity inversion (PPVI) in the diagnosis of Rossby wave dynamics and baroclinic development. He concludes that, ``PPVI does not help us to understand the dynamics of linear Rossby waves. It provides local tendencies of the streamfunction which are unrelated to the true ones. The same way, the motion of baroclinic waves in shear flow cannot be understood by using PPVI. Moreover, the effect of boundary temperatures as determined by PPVI is unrelated to the flow evolution.'' He goes further in arguing that we should not consider velocities as ``induced'' by PV anomalies defined by carving up the global domain. However, these conclusions partly reflect the limitations of his idealised experiments and the manner in which the PV components were partitioned from one another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.