908 resultados para domain expertise


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-­effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The creation of Causal Loop Diagrams (CLDs) is a major phase in the System Dynamics (SD) life-cycle, since the created CLDs express dependencies and feedback in the system under study, as well as, guide modellers in building meaningful simulation models. The cre-ation of CLDs is still subject to the modeller's domain expertise (mental model) and her ability to abstract the system, because of the strong de-pendency on semantic knowledge. Since the beginning of SD, available system data sources (written and numerical models) have always been sparsely available, very limited and imperfect and thus of little benefit to the whole modelling process. However, in recent years, we have seen an explosion in generated data, especially in all business related domains that are analysed via Business Dynamics (BD). In this paper, we intro-duce a systematic tool supported CLD creation approach, which analyses and utilises available disparate data sources within the business domain. We demonstrate the application of our methodology on a given business use-case and evaluate the resulting CLD. Finally, we propose directions for future research to further push the automation in the CLD creation and increase confidence in the generated CLDs.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La voix humaine constitue la partie dominante de notre environnement auditif. Non seulement les humains utilisent-ils la voix pour la parole, mais ils sont tout aussi habiles pour en extraire une multitude d’informations pertinentes sur le locuteur. Cette expertise universelle pour la voix humaine se reflète dans la présence d’aires préférentielles à celle-ci le long des sillons temporaux supérieurs. À ce jour, peu de données nous informent sur la nature et le développement de cette réponse sélective à la voix. Dans le domaine visuel, une vaste littérature aborde une problématique semblable en ce qui a trait à la perception des visages. L’étude d’experts visuels a permis de dégager les processus et régions impliqués dans leur expertise et a démontré une forte ressemblance avec ceux utilisés pour les visages. Dans le domaine auditif, très peu d’études se sont penchées sur la comparaison entre l’expertise pour la voix et d’autres catégories auditives, alors que ces comparaisons pourraient contribuer à une meilleure compréhension de la perception vocale et auditive. La présente thèse a pour dessein de préciser la spécificité des processus et régions impliqués dans le traitement de la voix. Pour ce faire, le recrutement de différents types d’experts ainsi que l’utilisation de différentes méthodes expérimentales ont été préconisés. La première étude a évalué l’influence d’une expertise musicale sur le traitement de la voix humaine, à l’aide de tâches comportementales de discrimination de voix et d’instruments de musique. Les résultats ont démontré que les musiciens amateurs étaient meilleurs que les non-musiciens pour discriminer des timbres d’instruments de musique mais aussi les voix humaines, suggérant une généralisation des apprentissages perceptifs causés par la pratique musicale. La seconde étude avait pour but de comparer les potentiels évoqués auditifs liés aux chants d’oiseaux entre des ornithologues amateurs et des participants novices. L’observation d’une distribution topographique différente chez les ornithologues à la présentation des trois catégories sonores (voix, chants d’oiseaux, sons de l’environnement) a rendu les résultats difficiles à interpréter. Dans la troisième étude, il était question de préciser le rôle des aires temporales de la voix dans le traitement de catégories d’expertise chez deux groupes d’experts auditifs, soit des ornithologues amateurs et des luthiers. Les données comportementales ont démontré une interaction entre les deux groupes d’experts et leur catégorie d’expertise respective pour des tâches de discrimination et de mémorisation. Les résultats obtenus en imagerie par résonance magnétique fonctionnelle ont démontré une interaction du même type dans le sillon temporal supérieur gauche et le gyrus cingulaire postérieur gauche. Ainsi, les aires de la voix sont impliquées dans le traitement de stimuli d’expertise dans deux groupes d’experts auditifs différents. Ce résultat suggère que la sélectivité à la voix humaine, telle que retrouvée dans les sillons temporaux supérieurs, pourrait être expliquée par une exposition prolongée à ces stimuli. Les données présentées démontrent plusieurs similitudes comportementales et anatomo-fonctionnelles entre le traitement de la voix et d’autres catégories d’expertise. Ces aspects communs sont explicables par une organisation à la fois fonctionnelle et économique du cerveau. Par conséquent, le traitement de la voix et d’autres catégories sonores se baserait sur les mêmes réseaux neuronaux, sauf en cas de traitement plus poussé. Cette interprétation s’avère particulièrement importante pour proposer une approche intégrative quant à la spécificité du traitement de la voix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of new surgical techniques offers chances but carries risks. Usually, several years pass before a critical appraisal and a balanced opinion of a new treatment method are available and rely on the evidence from the literature and expert's opinion. The frozen elephant trunk (FET) technique has been increasingly used to treat complex pathologies of the aortic arch and the descending aorta, but there still is an ongoing discussion within the surgical community about the optimal indications. This paper represents a common effort of the Vascular Domain of EACTS together with several surgeons with particular expertise in aortic surgery, and summarizes the current knowledge and the state of the art about the FET technique. The majority of the information about the FET technique has been extracted from 97 focused publications already available in the PubMed database (cohort studies, case reports, reviews, small series, meta-analyses and best evidence topics) published in English.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When users face a certain problem needing a product, service, or action to solve it, selecting the best alternative among them can be a dicult task due to the uncertainty of their quality. This is especially the case in the domains where users do not have an expertise, like for example in Software Engineering. Multiple criteria decision making (MCDM) methods are methods that help making better decisions when facing the complex problem of selecting the best solution among a group of alternatives that can be compared according to different conflicting criteria. In MCDM problems, alternatives represent concrete products, services or actions that will help in achieving a goal, while criteria represent the characteristics of these alternatives that are important for making a decision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superior recall of domain-specific patterns is well established as a defining attribute of expert performers. Recent studies on the developmental histories of expert team ball sport players (e.g. Baker, Côté, & Abernethy, 2003a) also suggest that experts characteristically receive exposure to a wide range of sports in their developing years and that this related sports experience may reduce the amount of sport-specific training needed to become an expert. This study examined whether the facilitation of expertise associated with other sport experience might arise from positive transfer of pattern recall skills from one sport to another. Expert netball, basketball and field hockey players and experienced non-experts performed a recall task for patterns of play derived from each of these sports. Experts from sports different to those shown in the presented pattern consistently outperformed non-experts in their recall of defensive player positions, suggesting some selective transfer of pattern recall skills may indeed be possible