978 resultados para distribution functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper outlines a technique for sensitive measurement of conduction phenomena in liquid dielectrics. The special features of this technique are the simplicity of the electrical system, the inexpensive instrumentation and the high accuracy. Detection, separation and analysis of a random function of current that is superimposed on the prebreakdown direct current forms the basis of this investigation. In this case, prebreakdown direct current is the output data of a test cell with large electrodes immersed in a liquid medium subjected to high direct voltages. Measurement of the probability-distribution function of a random fluctuating component of current provides a method that gives insight into the mechanism of conduction in a liquid medium subjected to high voltages and the processes that are responsible for the existence of the fluctuating component of the current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viscous modifications to the thermal distributions of quark-antiquarks and gluons have been studied in a quasiparticle description of the quark-gluon-plasma medium created in relativistic heavy-ion collision experiments. The model is described in terms of quasipartons that encode the hot QCD medium effects in their respective effective fugacities. Both shear and bulk viscosities have been taken in to account in the analysis, and the modifications to thermal distributions have been obtained by modifying the energy-momentum tensor in view of the nontrivial dispersion relations for the gluons and quarks. The interactions encoded in the equation of state induce significant modifications to the thermal distributions. As an implication, the dilepton production rate in the q (q) over bar annihilation process has been investigated. The equation of state is found to have a significant impact on the dilepton production rate along with the viscosities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li, Xing; Habbal, S.R., (2005) 'Hybrid simulation of ion cyclotron resonance in the solar wind: evolution of velocity distribution functions', Journal of Geophysical Research 110(A10) pp.A10109 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable measurement of the electron energy distribution function (EEDF) of plasmas is one of the most important subjects of plasma diagnostics, because this piece of information is the key to understand basic discharge mechanisms. Specific problems arise in the case of RF-excited plasmas, since the properties of electrons are subject to changes on a nanosecond time scale and show pronounced spatial anisotropy. We report on a novel spectroscopic method for phase- and space-resolved measurements of the electron energy distribution function of energetic (> 12 eV) electrons in RF discharges. These electrons dominate excitation and ionization processes and are therefore of particular interest. The technique is based on time-dependent measurements during the RF cycle of excited-state populations of rare gases admixed in small fractions. These measurements yield � in combination with an analytical model � detailed information on the excitation processes. Phase-resolved optical emission spectroscopy allows us to overcome the difficulties connected with the very low densities (107�109 cm�3) and the transient character of the electrons in the sheath region. The EEDF of electrons accelerated in the sheath region can be described by a shifted Maxwellian with a drift velocity component in direction of the electric field. The method yields the high-energy tail of the EEDF on an absolute scale. The applicability of the method is demonstrated at a capacitively coupled RF discharge in hydrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron energy probability functions measured with a passively compensated Langmuir probe in asymmetric capacitively coupled hydrogen and deuterium plasmas exhibit structure. The otherwise relatively continuous distribution appears to have an abrupt peak in electron density near 5 eV. This structure occurs at a higher energy in deuterium than hydrogen and there is a correlation between floating potential and the voltage at which the structure is observed in the second derivative of the I(V) characteristic. While the cause of the structure has yet to be clarified, spectroscopic observations and computer-based hydrogen models indicate that the high energy tail of the distribution is strongly modulated during the radio frequency cycle. The effect of this modulation on plasma properties and probe measurements has yet to be explored. (C) 1999 American Institute of Physics. [S0003-6951(99)00819-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical electron energy distribution functions (EEDFS) measured in and calculated for the driver of a multicusp ion source operating in hydrogen are compared. The results show that atomic physics based theoretical models can accurately predict the EEDF in such discharges if some appropriate experimentally determined quantities are used as input parameters. The magnitude and shape of the EEDF is found to be particularly sensitive to the effective surface area to volume ratio for electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The second derivative of a Langmuir probe characteristic is used to establish the electron energy distribution function (EEDF) in both a tandem and hybrid multicusp H- ion source. Moveable probes are used to establish the spatial variation of the EEDF. The negative ion density is measured by laser induced photo-detachment. In the case of the hybrid source the EEDF consists of a cold Maxwellian in the central region of the source; the electron temperature increases with increasing discharge current (rising from 0.3 eV at 1 A to 1.2 eV at 50 A when the pressure is 0.4 Pa). A hot-electron tail exists in the EEDF of the driver region adjacent to each filament which is shown to consist of a distinct group of primary electrons at low pressure (0.08 Pa) but becomes degraded mainly through inelastic collisions at higher pressures (0.27 Pa). The tandem source, on the other hand, has a single driver region which extends throughout the central region. The primary electron confinement times are much longer so that even at the lowest pressure considered (0.07 Pa) the primaries are degraded. In both cases the measured EEDF at specific locations and values of discharge operating parameters are used to establish the rate coefficients for the processes of importance in H- production and destruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.