992 resultados para dispersion simulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出将空间域的透镜列阵法和时间域的光谱色散平滑法结合起来实现靶面的均匀辐照.消衍射型透镜列阵能获得边缘陡峭且顶部较平坦的准近场焦斑,光谱色散平滑则能有效地抹平焦斑内部由多光束干涉引起的细密条纹.数值结果显示,通过该方案能获得均匀性较好的焦斑.进一步分析了光谱色散平滑单元中位相调制和光栅的参数对辐照均匀性的影响,发现参数的选取要在焦斑均匀性和能量利用率之间取得合理平衡,以在整体上获得最佳的均匀辐照效果.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ATTMA "Aerosol Transport in the Trans-Manche Atmosphere" project investigates the transportation and dispersion of air pollutants across the English Channel, in collaboration with local authorities and other Universities in Southern England and Northern France. The research is concerned with both forward and inverse (receptor based) tracking. Two alternative dispersion simulation methods are used: (a) Lagrangian Particle Dispersion (LPD) models, (b) Eulerian Finite Volume type models. This paper is concerned with part (a), the simulations based on LPD models. Two widely applied LPD models are used and compared. Since in many observed episodes the source of pollution is traced outside the region of interest, long range, trans-continental transport is also investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Kriging interpolation method is combined with an object-based evaluation measure to assess the ability of the UK Met Office's dispersion and weather prediction models to predict the evolution of a plume of tracer as it was transported across Europe. The object-based evaluation method, SAL, considers aspects of the Structure, Amplitude and Location of the pollutant field. The SAL method is able to quantify errors in the predicted size and shape of the pollutant plume, through the structure component, the over- or under-prediction of the pollutant concentrations, through the amplitude component, and the position of the pollutant plume, through the location component. The quantitative results of the SAL evaluation are similar for both models and close to a subjective visual inspection of the predictions. A negative structure component for both models, throughout the entire 60 hour plume dispersion simulation, indicates that the modelled plumes are too small and/or too peaked compared to the observed plume at all times. The amplitude component for both models is strongly positive at the start of the simulation, indicating that surface concentrations are over-predicted by both models for the first 24 hours, but modelled concentrations are within a factor of 2 of the observations at later times. Finally, for both models, the location component is small for the first 48 hours after the start of the tracer release, indicating that the modelled plumes are situated close to the observed plume early on in the simulation, but this plume location error grows at later times. The SAL methodology has also been used to identify differences in the transport of pollution in the dispersion and weather prediction models. The convection scheme in the weather prediction model is found to transport more pollution vertically out of the boundary layer into the free troposphere than the dispersion model convection scheme resulting in lower pollutant concentrations near the surface and hence a better forecast for this case study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho são apresentadas duas técnicas para a avaliação da dispersão, num corpo d'água receptor, do efluente líquido de uma refinaria de petróleo. Assim, a pluma de dispersão foi caracterizada por medidas em campo de condutividade elétrica e por simulação computacional (simulador Cormix). Como caso de estudo, escolheu-se uma refinaria de petróleo cujo efluente é lançado no rio Atibaia (Paulínia/SP). O comportamento do efluente foi avaliado em um trecho de 1000 m após o ponto de lançamento. Os resultados demonstraram que a medição da condutividade elétrica é uma técnica adequada para a avaliação da dispersão de efluentes líquidos de refinaria de petróleo, pois apresentam alta condutividade elétrica e, com isso, há um forte contraste entre os valores do efluente e do rio. Além disso, outros parâmetros de qualidade da água do rio seguiram comportamento de dispersão semelhante ao da condutividade. A pluma de dispersão gerada pelo simulador computacional apresentou uma elevada concordância com os dados obtidos em campo. Nesse sentido, a simulação computacional pode ser uma ferramenta útil para a avaliação da dispersão do efluente considerando-se cenários hipotéticos, e para projetos de emissários.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two mathematical models are used to simulate pollution in the Bay of Santander. The first is the hydrodynamic model that provides the velocity field and height of the water. The second gives the pollutant concentration field as a resultant. Both models are formulated in two-dimensional equations. Linear triangular finite elements are used in the Galerkin procedure for spatial discretization. A finite difference scheme is used for the time integration. At each time step the calculated results of the first model are input to the second model as field data. The efficiency and accuracy of the models are tested by their application to a simple illustrative example. Finally a case study in simulation of pollution evolution in the Bay of Santander is presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results of full numerical simulations of a guiding-centre soliton system with randomly birefringent SMF fibre are shown and analysed. It emerges that the soliton system becomes unstable even for small amounts of PMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.