961 resultados para discrete-choice models
Resumo:
The aim of this paper is twofold: firstly, to carry out a theoreticalreview of the most recent stated preference techniques used foreliciting consumers preferences and, secondly, to compare the empiricalresults of two dierent stated preference discrete choice approaches.They dier in the measurement scale for the dependent variable and,therefore, in the estimation method, despite both using a multinomiallogit. One of the approaches uses a complete ranking of full-profiles(contingent ranking), that is, individuals must rank a set ofalternatives from the most to the least preferred, and the other usesa first-choice rule in which individuals must select the most preferredoption from a choice set (choice experiment). From the results werealize how important the measurement scale for the dependent variablebecomes and, to what extent, procedure invariance is satisfied.
Resumo:
Integrated choice and latent variable (ICLV) models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM) for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.
Resumo:
"November 1982."
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
The paper considers the use of artificial regression in calculating different types of score test when the log
Resumo:
OBJECTIVE To assess Spanish and Portuguese patients' and physicians' preferences regarding type 2 diabetes mellitus (T2DM) treatments and the monthly willingness to pay (WTP) to gain benefits or avoid side effects. METHODS An observational, multicenter, exploratory study focused on routine clinical practice in Spain and Portugal. Physicians were recruited from multiple hospitals and outpatient clinics, while patients were recruited from eleven centers operating in the public health care system in different autonomous communities in Spain and Portugal. Preferences were measured via a discrete choice experiment by rating multiple T2DM medication attributes. Data were analyzed using the conditional logit model. RESULTS Three-hundred and thirty (n=330) patients (49.7% female; mean age 62.4 [SD: 10.3] years, mean T2DM duration 13.9 [8.2] years, mean body mass index 32.5 [6.8] kg/m(2), 41.8% received oral + injected medication, 40.3% received oral, and 17.6% injected treatments) and 221 physicians from Spain and Portugal (62% female; mean age 41.9 [SD: 10.5] years, 33.5% endocrinologists, 66.5% primary-care doctors) participated. Patients valued avoiding a gain in bodyweight of 3 kg/6 months (WTP: €68.14 [95% confidence interval: 54.55-85.08]) the most, followed by avoiding one hypoglycemic event/month (WTP: €54.80 [23.29-82.26]). Physicians valued avoiding one hypoglycemia/week (WTP: €287.18 [95% confidence interval: 160.31-1,387.21]) the most, followed by avoiding a 3 kg/6 months gain in bodyweight and decreasing cardiovascular risk (WTP: €166.87 [88.63-843.09] and €154.30 [98.13-434.19], respectively). Physicians and patients were willing to pay €125.92 (73.30-622.75) and €24.28 (18.41-30.31), respectively, to avoid a 1% increase in glycated hemoglobin, and €143.30 (73.39-543.62) and €42.74 (23.89-61.77) to avoid nausea. CONCLUSION Both patients and physicians in Spain and Portugal are willing to pay for the health benefits associated with improved diabetes treatment, the most important being to avoid hypoglycemia and gaining weight. Decreased cardiovascular risk and weight reduction became the third most valued attributes for physicians and patients, respectively.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.
Resumo:
Four basic medical decision making models are commonly discussed in the literature in reference to physician-patient interactions. All fall short in their attempt to capture the nuances of physician-patient interactions, and none satisfactorily address patients' preferences for communication and other attributes of care. Prostate cancer consultations are one setting where preferences matter and are likely to vary among patients. Fortunately, discrete choice experiments are capable of casting light on patients' preferences for communication and other attributes of value that make up a consultation before the consultation occurs, which is crucial if patients are to derive the most utility from the process of reaching a decision as well as the decision itself. The results of my dissertation provide strong support to the notion that patients, at least in the hypothetical setting of a DCE, have identifiable preferences for the attributes of a prostate cancer consultation and that those preferences are capable of being elicited before a consultation takes place. Further, patients' willingness-to-pay for the non-cost attributes of the consultation is surprisingly robust to a variety of individual level variables of interest. ^
Resumo:
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper suggests that a convenient score test against non-nested alternatives can be constructed from the linear combination of the likelihood functions of the competing models. It is shown that this procedure is essentially a test for the correct specification of the conditional distribution of the variable of interest.
Resumo:
This paper analyzes the nature of health care provider choice inthe case of patient-initiated contacts, with special reference toa National Health Service setting, where monetary prices are zeroand general practitioners act as gatekeepers to publicly financedspecialized care. We focus our attention on the factors that mayexplain the continuously increasing use of hospital emergencyvisits as opposed to other provider alternatives. An extendedversion of a discrete choice model of demand for patient-initiatedcontacts is presented, allowing for individual and town residencesize differences in perceived quality (preferences) betweenalternative providers and including travel and waiting time asnon-monetary costs. Results of a nested multinomial logit model ofprovider choice are presented. Individual choice betweenalternatives considers, in a repeated nested structure, self-care,primary care, hospital and clinic emergency services. Welfareimplications and income effects are analyzed by computingcompensating variations, and by simulating the effects of userfees by levels of income. Results indicate that compensatingvariation per visit is higher than the direct marginal cost ofemergency visits, and consequently, emergency visits do not appearas an inefficient alternative even for non-urgent conditions.