925 resultados para discrete tomography
Resumo:
An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction.
Resumo:
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction. (c) 2012 Optical Society of America
Resumo:
Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (mu(a)) and scattering coefficient (mu(s)) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) mu(s) of the medium is much greater than mu(a) (mu(s) >> mu(a)). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such a scheme, the spectroscopic variation of absorption coefficient in the tissue can be used to arrive at the oxygenation changes in the tissue. (C) 2016 AIP Publishing LLC.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectraldomain/swept-source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept-source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional morphological layout of the sample that can be reconstructed in software via three-dimensional discrete Fourier-transform. This method of recording of the OCT signal confers signal-to-noise ratio improvement in comparison with "flying-spot" time-domain OCT. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present theoretical and experimental study of imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.