952 resultados para dipolar atom
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a coherent beam splitter for polarized heteronuclear molecules based on a stimulated Raman adiabatic passage scheme that uses a tripod linkage of electrotranslational molecular states. We show that for strongly polarized molecules the rotational dynamics imposes significantly larger Rabi frequencies than would otherwise be expected, but within this limitation, a full transfer of the molecules to two counterpropagating ground-state wave packets is possible.
Resumo:
Recent developments in the field of ultracold gases has led to the production of degenerate samples of polar molecules. These have large static electric-dipole moments, which in turn causes the molecules to interact strongly. We investigate the interaction of polar particles in waveguide geometries subject to an applied polarizing field. For circular waveguides, tilting the direction of the polarizing field creates a periodic inhomogeneity of the interparticle interaction. We explore the consequences of geometry and interaction for stability of the ground state within the Thomas-Fermi model. Certain combinations of tilt angles and interaction strengths are found to preclude the existence of a stable Thomas-Fermi ground state. The system is shown to exhibit different behavior for quasi-one-dimensional and three-dimensional trapping geometries.
Resumo:
Azomethine ylides, generated from imine-derived O-cinnamyl or O-crotonyl salicylaldeyde and α-amino acids, undergo intramolecular 1,3-dipolar cycloaddition, leading to chromene[4,3-b]pyrrolidines. Two reaction conditions are used: (a) microwave-assisted heating (200 W, 185 °C) of a neat mixture of reagents, and (b) conventional heating (170 °C) in PEG-400 as solvent. In both cases, a mixture of two epimers at the α-position of the nitrogen atom in the pyrrolidine nucleus was formed through the less energetic endo-approach (B/C ring fusion). In many cases, the formation of the stereoisomer bearing a trans-arrangement into the B/C ring fusion was observed in high proportions. Comprehensive computational and kinetic simulation studies are detailed. An analysis of the stability of transient 1,3-dipoles, followed by an assessment of the intramolecular pathways and kinetics are also reported.
Resumo:
Density functional theory (DFT) calculations have been carried out to explore the catalytic activation of C–H bonds in methane by the iron atom, Fe, and the iron dimer, Fe2. For methane activation on an Fe atom, the calculations suggest that the activation of the first C–H bond is mediated via the triplet excited-state potential energy surface (PES), with initial excitation of Fe to the triplet state being necessary for the reaction to be energetically feasible. Compared with the breaking of the first C–H bond, the cleavage of the second C–H bond is predicted to involve a significantly higher barrier, which could explain experimental observations of the HFeCH3 complex rather than CH2FeH2 in the activation of methane by an Fe atom. For methane activation on an iron dimer, the cleavage of the first C–H bond is quite facile with a barrier only 11.2, 15.8 and 8.4 kcal/mol on the septet state energy surface at the B3LYP/6-311+G(2df,2dp), BPW91/6-311+G(2df,2dp) and M06/B3LYP level, respectively. Cleavage of the second C–H bond from HFe2CH3 involves a barrier calculated respectively as 18.0, 10.7 and 12.4 kcal/mol at the three levels. The results suggest that the elimination of hydrogen from the dihydrogen complex is a rate-determining step. Overall, our results indicate that the iron dimer Fe2 has a stronger catalytic effect on the activation of methane than the iron atom.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.
Resumo:
In this work, ab initio spin-polarised Density Functional Theory (DFT) calculations are performed to study the interaction of a Ti atom with a NaAlH4(001) surface. We confirm that an interstitially located Ti atom in the NaAlH4 subsurface is the most energetically favoured configuration as recently reported (Chem. Comm. (17) 2006, 1822). On the NaAlH4(001) surface, the Ti atom is most stable when adsorbed between two sodium atoms with an AlH4 unit beneath. A Ti atom on top of an Al atom is also found to be an important structure at low temperatures. The diffusion of Ti from the Al-top site to the Na-bridging site has a low activation barrier of 0.20 eV and may be activated at the experimental temperatures (∼323 K). The diffusion of a Ti atom into the energetically favoured subsurface interstitial site occurs via the Na-bridging surface site and is essentially barrierless.
Resumo:
The syntheses, properties and electronic structures of a series of porphyrin dimers connected by two-atom bridges were compared. The study found that an azo linker results in the most efficient electronic communication between the two porphyrin rings, and is the superior connector for dimers, trimers and oligomers in the design of nonlinear optical materials. This has implications for the design of molecular probes and sensors, photodynamic therapy, microfabrication, and three-dimensional optical data storage. The research led to the synthesis of a number of new porphyrin monomers and dimers, which were characterised using structural, spectroscopic and spectrometric techniques.
Resumo:
We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.
Resumo:
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.
Resumo:
An expanding education market targeted through ‘bridging material’ enabling cineliteracies has the potential to offer Australian producers with increased distribution opportunities, educators with targeted teaching aids and students with enhanced learning outcomes. For Australian documentary producers, the key to unlocking the potential of the education sector is engaging with its curriculum-based requirements at the earliest stages of pre-production. Two key mechanisms can lead to effective educational engagement; the established area of study guides produced in association with the Australian Teachers of Media (ATOM) and the emerging area of philanthropic funding coordinated by the Documentary Australia Foundation (DAF). DAF has acted as a key financial and cultural philanthropic bridge between individuals, foundations, corporations and the Australian documentary sector for over 14 years. DAF does not make or commission films but through management and receipt of grants and donations provides ‘expertise, information, guidance and resources to help each sector work together to achieve their goals’. The DAF application process also requires film-makers to detail their ‘Education and Outreach Strategy’ for each film with 582 films registered and 39 completed as of June 2014. These education strategies that can range from detailed to cursory efforts offer valuable insights into the Australian documentary sector's historical and current expectations of education as a receptive and dynamic audience for quality factual content. A recurring film-maker education strategy found in the DAF data is an engagement with ATOM to create a study guide for their film. This study guide then acts as a ‘bridging material’ between content and education audience. The frequency of this effort suggests these study guides enable greater educator engagement with content and increased interest and distribution of the film to educators. The paper Education paths for documentary distribution: DAF, ATOM and the study guides that bind them will address issues arising out of the changing needs of the education sector and the impact targeting ‘cineliteracy’ outcomes may have for Australian documentary distribution.
Resumo:
In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.