63 resultados para dimethylamine
Resumo:
In view of the established extrapulmonary cancer sites targeted by smoking a multiplicity of compounds, and mechanisms might be involved. It has been debated that smoking caused increased incidence of N-methylvaline at the N-terminus of haemoglobin. Because this could indicate a relevance of methylating nitrosamines in tobacco smoke, data are presented from an industrial cohort of 35 smokers and 21 non-smokers repeatedly monitored between 1994 and 1999. In general, N-methylvaline adduct levels in haemoglobin of smokers were approximately 50% higher than those of non-smokers. The smoking-induced methylation of haemoglobin is likely to be caused by dimethylnitrosamine (N-nitroso-dimethylamine), a major nitrosamine in side-stream tobacco smoke. The biomonitoring data emphasise the potential value of N-methylvaline as a smoking-related biomarker and call for intensified research on tobacco smoke compounds that lead to macromolecular methylation process.
Resumo:
Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.
Resumo:
Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.
Resumo:
The reactions of halogenocyclotetraphosphazatetraenes N4P4X8, with nucleophiles have received little attention and only the reactions of the octachloride, N4P4Cl8, with amines have been investigated in any detail.1 Millington and Sowerby2 studied the reaction of N4P4Cl8 with dimethylamine and isolated the derivatives, N4P4Cl8-n (NMe2)n, n = 2,3,4,5,6,8;several N-methylanilino derivatives
Resumo:
The He I photoelectron spectra of bromine, methylamine, and their complex have been obtained, and the spectra show that lone-pair orbital energy of nitrogen in methylamine is stabilized by 1.8 eV and the bromine orbital energies are destabilized by about 0.5 eV due to complexation. Ab initio calculations have been performed on the charge-transfer complexes of Br-2 with ammonia and methyl-, dimethyl-, and trimethylamines at the 3-21G*, 6-311G, and 6-311G* levels and also with effective core potentials. Calculations predict donor and acceptor orbital energy shifts upon complexation, and there is a reasonable agreement between the calculated and experimental results. Complexation energies have been corrected for BSSE. Frequency analysis has confirmed that ammonia and trimethylamine form complexes with C-3v symmetry and methylamine and dimethylamine with C-s symmetry. Calculations reveal that the lone-pair orbital of nitrogen in amine and the sigma* orbital of Br-2 are involved in the charge-transfer interaction. LANL1DZ basis seems to be consistent and give a reliable estimate of the complexation energy. The computed complexation energies, orbital energy shifts, and natural bond orbital analysis show that the strength of the complex gradually increases from ammonia to trimethylamine.
Resumo:
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Resumo:
A highly electrophilic ruthenium center in the RuCl(dppe)(2)]OTf] complex brings about the activation of the B H bond in ammonia borane (H3N center dot BH3, AB) and dimethylamine borane (Me2HN center dot BH3, DMAB). At room temperature, the reaction between RuCl(dppe)(2)]OTf] and AB or DMAB results in trans-RuH(eta(2)-H-2)(dppe)(2)]OTf] trans-RuCl(eta(2)-H-2)(dppe)(2)]OTf], and trans-RuH(Cl)(dppe)(2)], as noted in the NMR spectra. Mixing the ruthenium complex and AB or DMAB at low temperature (198/193 K) followed by NMR spectral measurements as the reaction mixture was warmed up to room temperature allowed the observation of various species formed enroute to the final products that were obtained at room temperature. On the basis of the variable-temperature multinuclear NMR spectroscopic studies of these two reactions, the mechanistic insights for B-H bond activation were obtained. In both cases, the reaction proceeds via an eta(1)-B-H moiety bound to the metal center. The detailed mechanistic pathways of these two reactions as studied by NMR spectroscopy are described.
Resumo:
Minced fish is a significant component of a number of frozen fishery products like fish fingers, cakes and patties. Predominately minced fish is produced from gadoid species (Alaska pollack, cod, saithe, hake and others) possessing the enzyme trimethylamine oxide demethylase (TMAOase, E.C. 4.1.2.32) (Rehbein and Schreiber 1984). TMAOase catalyses the degradation of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA), preferentially during frozen storage of products (Hultin 1992). In most gadoid species light muscle contains only low activity of TMAOase, the activity of red muscle and bellyflaps being somewhat higher. In contrast, the TMAOase activity in blood, kidney and other tissues, residues of which may contaminate minced fish flesh, may be higher for several orders of magnitude (Rehbein and Schreiber 1984).
Resumo:
North-Sea whiting shows a much shorter shelf life in melting ice than other gadoid fishes like saithe, cod and haddock. It can be stored for a maximum of 14 days in ice before being rated as unfit for human consumption. Appropriate freshness indicators for whiting are: sensory tests, dimethylamine- and trimethylamine oxide-nitrogen, creatine content. Of most value for whiting is the determination of thc electric resistance by the fishtester VI.
Resumo:
Experiments were conducted to develop and standardize the protocols for cryopreservation of sperm of common carp, Cyprinus carpio and also for using the cryopreserved sperm for fertilization of eggs. Nine extender solutions as Alsever's solution, kurokura-1, kurokura-2, urea egg-yolk, egg-yolk citrate, 0.6% glucose, 0.9% NaCl, Ma and Mb, and five cryoprotectants namely ethanol, methanol, dimethylsulfoxide (DMSO), dimethylamine (DMA) and glycerol were tested. The cryoprotectants were mixed at 10% concentration of the extenders (v/v) to make the cryodiluents. Milt and cryodiluents were mixed at a ratio of 1:9 for Alsever's solution, kurokura-1, kurokura-2, 0.6% glucose and 0.9% NaCl, 1:4 for urea egg-yolk, egg-yolk citrate, Ma and Mb. Among the cryodiluents Alsever's solution mixed with either ethanol or methanol was found to be suitable and it produced more than 90% and 80% spermatozoan motility at equilibrium and post-thaw periods, respectively. Kurokura-1 and kurokura-2 when mixed with the same cryoprotectants showed good spermatozoan motility at equilibrium period (80-90%) but the motility was reduced (30-55%) at post-thaw state. Other extenders did not produce acceptable sperm-motility and in some cases the frozen milt became clotted. Different dilution ratios (1:1, 1:2, 1:4, 1:5, 1:7, 1:9, 1:12, 1:15, 1:20) were formulated for obtaining a suitable milt dilution, the dilution ratio of 1: 9 (milt : cryodiluent) demonstrated the highest post-thaw spermatozoan motility (80%) in Alserver's solution. The optimum concentration of cryoprotectants in the cryodiluents was determined, 10% concentration level was found to be effective to produce the highest number of spermatozoan motility in comparison to the other concentrations (5%, 15%, 20% 30%). Sperm preserved with the cryodiluent Alsever's solution along with either methanol or ethanol was found to be effective to fertilize eggs and produce hatchlings. The hatching rates ranged between 1.48% and 14.76%, compare to control. The fish produced through use of cryopreserved sperm and normal sperm were found to grow well and no significant (P<0.05) growth difference was observed between them. In case of silver barb, Barbonymus gonionotus, sperm tested against six extenders such as egg-yolk citrate, urea-egg-yolk, kurokura-1, kurokura-2, 0.9% NaCl and modified fish ringer (MFR) solution. Cryoprotectants used were the same as those of C. carpio. Milt was diluted with the cryodiluent at a ratio of 1:4 for egg-yolk citrate and urea-egg-yolk, 1:5 for kurokura-1 and 1:9 for 0.9% NaCl, MFR and kurokura-2. The cryoprotectant concentration was maintained at 10% of the extender (v/v) in all the cases. Among the extenders, egg-yolk citrate and urea-egg-yolk mixed with 10% DMSO, methanol and ethanol produced 50% post-thaw spermatozoan motility, whereas DMA and glycerol provided only 10% motility. Trials on milt dilution ratio and cryoprotectant concentration are being conducted. Fertilization trials are also underway.
Reaction process phase transfer catalysis for selective oxidative-reductive carbonylation to monuron
Resumo:
A new bisphenol monomer, 2,2'-dimethylaminemetllylene-4,4'-biphenol (DABP), was easily prepared by Mannich reaction of dimethylamine and formaldehyde with 4,4'-biphenol. Novel partially fluorinated poly(arylene ether sulfone)s with pendant quaternary ammonium groups were prepared by copolymerization of DABP, 4,4'-biphenol, and 3,3',4,4'- tetrafluorodiphenylsulfone, followed by reaction with iodomethane. The resulting copolymers PSQNI-x (where x represents the molar fraction of DABP in the feed) with high molecular weight exhibited outstanding solubility in polar aprotic solvents; thus, the flexible and tough membranes of PSQNI-x with varying ionic content could be prepared by casting from the DMAc solution. Novel anion exchange membranes, PSQNOH-x, were obtained by an anion exchange of PSQNI-x with 1 N NaOH.