977 resultados para dimethyl ether synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we investigate the use of CuO-ZnO-Al2O3 (CZA) with different solid acid catalysts (NH(4)ZSM-5. HZSM-5 or gamma-Al2O3) for the production of dimethyl ether from syngas. It was found that of the solid acids, which are necessary for the dehydration function of the admixed system, the CZA/HZSM-5 bifunctional catalyst with a 0.25 acid fraction showed high stability over a continuous period of 212 h.

As this particular system was observed to loose around 16.2% of its initial activity over this operating period this study further investigates the CZA/HZSM-5 bifunctional catalyst in terms of its deactivation mechanisms. TPO investigations showed that the catalyst deactivation was related to coke deposited on the metallic sites: interface between the metallic sites and the support near the metal-support: and on the support itself. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selected Bronsted acidic ionic liquids were tested as homogeneous catalysts for the dehydration of methanol to dimethyl ether. Ionic liquids incorporating an alkanesulfonic acid as a part of the cation, a complex acidic anion, [A(2)H](-), or both, proved to be good catalysts for this process, providing high conversions and selectivities. Homogeneous catalysis in the liquid state represents a novel approach to dimethyl ether synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total synthesis of the dimethyl ether of marsupsin, in seven steps starting from phloroglucinol, is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m- 3 h- 1 and 203.80 kg m- 3 h- 1 when gas hourly space velocities were 650 h- 1 and 1200 h- 1, respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H2/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cu-Zn-Al methanol catalyst combined with HZSM-5 was used for dimethyl ether (DME) synthesis from a syngas containing nitrogen, which was produced by air-partial oxidation of methane (air-POM). Air-POM occurred at 850 degreesC, 0.8 MPa, CH4/air/H2O/CO2 ratio of 1/2.4/0.8/0.4 over a Ni-based catalyst modified by magnesia and lanthanum oxide with 96% CH4 conversion and constantly gave syngas with a H-2/CO ratio of 2/1 during a period of 450 h. The obtained N-2-containing syngas was used directly for DME synthesis. About 90% CO per-pass conversion, 78% DME selectivity and 70% DME yield could be achieved during 450 h stability testing under the pressure of 5.0 MPa. the temperature of 240 degreesC and the space velocity of 1000 h(-1). (C) 2002 Elsevier Science B. V. All rights reserved.