774 resultados para dimer interface fatty acid binding
Resumo:
The crystal structure of dimeric Lys49-phospholipase A2 myotoxin-II from Bothrops moojeni (MjTX-II) co-crystallized with stearic acid (C18H36O2) has been determined at a resolution of 1.8 angstrom. The electron density maps permitted the unambiguous inclusion of six stearic acid molecules in the refinement. Two stearic acid molecules could be located in the substrate-binding cleft of each monomer in positions, which favor the interaction of their carboxyl groups with active site residues. The way of binding of stearic acids to this Lys49-PLA(2)s is analogous to phospholipids and transition state analogues to catalytically active PLA(2)s. Two additional stearic acid molecules were located at the dimer interface region, defining a hitherto unidentified acyl-binding site on the protein surface. The strictly conserved Lys122 for Lys49-PLA(2)s may play a fundamental role for stabilization of legend-protein complex. The comparison of MjTX-II/satiric acid complex with other Lys-PLA(2)s structures whose putative fatty acids were located at their active site is also analysed. Molecular details of the stearic acid/protein interactions provide insights to binding in croup I/II PLA(2)s and to the possible interactions of Lys49-PLA(2)s with target membranes. (c) 2004 Elsevier SAS. All rights reserved.
Resumo:
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.
Resumo:
As proteínas ligadoras de ácidos graxos (Fatty Acid Binding Proteins, FABPs) de parasitos têm um papel importante no processo de infecção por estes organismos. Por este motivo, estas proteínas são antígenos candidatos para vacina contra a infecção por Schistosoma mansoni e Fasciola hepatica. No presente trabalho foram caracterizadas FABPs de F. hepatica e comparadas com a proteína Sm14 de S. mansoni, a FABP de parasito melhor caracterizada, mediante análise de sequências e estruturas modeladas. Também foram clonadas, expressas e purificadas as FABPs tipo 1 e tipo 3 de F. hepatica. Os resultados do presente estudo indicam que a FABP tipo 3 de F. hepatica é relacionada estrutural, imunológica e funcionalmente com a Sm14, um candidato vacinal amplamente estudado. Devido à importância da Sm14 como alvo para o desenvolvimento de vacina para a esquistossomose, as características apresentadas pela FhFABP3 de F. hepatica apontam esta proteína como um candidato importante também para o desenvolvimento de uma vacina contra a fasciolose
Resumo:
We have determined the structure of the fatty acid-binding protein 6 (fabp6) gene and the tissue-specific distribution of its transcripts in embryos, larvae and adult zebrafish (Danio rerio). Like most members of the vertebrate FABP multigene family, the zebrafish fabp6 gene contains four exons separated by three introns. The coding region of the gene and expressed sequence tags code for a polypeptide of 131 amino acids (14 kDa, pI 6.59). The putative zebrafish Fabp6 protein shared greatest sequence identity with human FABP6 (55.3%) compared to other orthologous mammalian FABPs and paralogous zebrafish Fabps. Phylogenetic analysis showed that the zebrafish Fabp6 formed a distinct clade with the mammalian FABP6s. The zebrafish fabp6 gene was assigned to linkage group (chromosome) 21 by radiation hybrid mapping. Conserved gene synteny was evident between the zebrafish fabp6 gene on chromosome 21 and the FABP6/Fabp6 genes on human chromosome 5, rat chromosome 10 and mouse chromosome 11. Zebrafish fabp6 transcripts were first detected in the distal region of the intestine of embryos at 72 h postfertilization. This spatial distribution remained constant to 7-day-old larvae, the last stage assayed during larval development. In adult zebrafish, fabp6 transcripts were detected by RT-PCR in RNA extracted from liver, heart, intestine, ovary and kidney (most likely adrenal tissue), but not in RNA from skin, brain, gill, eye or muscle. In situ hybridization of a fabp6 riboprobe to adult zebrafish sections revealed intense hybridization signals in the adrenal homolog of the kidney and the distal region of the intestine, and to a lesser extent in ovary and liver, a transcript distribution that is similar, but not identical, to that seen for the mammalian FABP6/Fabp6 gene. © 2008 The Authors.
Resumo:
BACKGROUND The early diagnosis of acute myocardial infarction (AMI) very soon after symptom onset remains a major clinical challenge, even when using high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS We investigated the incremental value of heart-type fatty acid-binding protein (hFABP) in a pre-specified subgroup analysis of patients presenting with suspected AMI within 1 h of symptom onset to the emergency department (ED) in a multicentre study. HFABP was measured in a blinded fashion. Two independent cardiologists using all available clinical information, including hs-cTnT, adjudicated the final diagnosis. Overall, 1411 patients were enrolled, of whom 105 patients presented within 1 h of symptom onset. Of these, 34 patients (32.4%) had AMI. The diagnostic accuracy as quantified by the area under the receiver-operating characteristics curve (AUC) of hFABP was high (0.84 (95% CI 0.74-0.94)). However, the additional use of hFABP only marginally increased the diagnostic accuracy of hs-cTnT (AUC 0.88 (95% CI 0.81-0.94) for hs-cTnT alone to 0.90 (95% CI 0.83-0.98) for the combination; p=ns). After the exclusion of 18 AMI patients with ST-segment elevation, similar results were obtained. Among the 16 AMI patients without ST-segment elevation, six had normal hs-cTnT at presentation. Of these, hFABP was elevated in two (33.3%) patients. CONCLUSIONS hFABP does not seem to significantly improve the early diagnostic accuracy of hs-cTnT in the important subgroup of patients with suspected AMI presenting to the ED very early after symptom onset.
Resumo:
Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.
Resumo:
Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.
Resumo:
Molecular cloning of components of protective antigenic preparations has suggested that related parasite fatty acid-binding proteins could form the basis of the protective immune crossreactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. Molecular models of the two parasite proteins showed that both molecules adopt the same basic three-dimensional structure, consisting of a barrel-shaped molecule formed by 10 antiparallel beta-pleated strands joined by short loops, and revealed the likely presence of crossreactive, discontinuous epitopes principally derived from amino acids in the C-terminal portions of the molecules. A recombinant form of the S. mansoni antigen, rSm14, protected outbred Swiss mice by up to 67% against challenge with S. mansoni cercariae in the absence of adjuvant and without provoking any observable autoimmune response. The same antigen also provided complete protection against challenge with F. hepatica metacercariae in the same animal model. The results suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni, of veterinary and human importance, respectively.
Resumo:
To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate concentrations to induce gene amplification. Stably transfected clones were characterized by Southern blotting; those with highest copy numbers of pFR400 alone (pFR400) or pFR400 and pMAAT2 (pFR400/pMAAT2) were expanded for further study. [3H]Oleate uptake was measured in medium containing 500 microM bovine serum albumin and 125-1000 microM total oleate (unbound oleate, 18-420 nM) and consisted of saturable and nonsaturable components. pFR400/pMAAT2 cells exhibited no increase in the rate constant for nonsaturable oleate uptake or in the uptake rate of [14C]octanoate under any conditions. By contrast, Vmax (fmol/sec per 50,000 cells) of the saturable oleate uptake component increased 3.5-fold in pFR400/pMAAT2 cells compared to pFR400, with a further 3.2-fold increase in the presence of Zn2+. Zn2+ had no effect in pFR400 controls (P > 0.5). The overall increase in Vmax between pFR400 and pFR400/pMAAT2 in the presence of Zn2+ was 10.4-fold (P < 0.01) and was highly correlated (r = 0.99) with expression of FABPpm in plasma membranes as determined by Western blotting. Neither untransfected 3T3 nor pFR400 cells expressed cell surface FABPpm detectable by immunofluorescence. By contrast, plasma membrane immunofluorescence was detected in pFR400/pMAAT2 cells, especially if cultured in 100 microM Zn2+. The data support the dual hypotheses that mAspAT and FABPpm are identical and mediate saturable long-chain free fatty acid uptake.
Resumo:
A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.