1 resultado para digraphes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les problèmes de satisfaction de contraintes, qui consistent à attribuer des valeurs à des variables en respectant un ensemble de contraintes, constituent une large classe de problèmes naturels. Pour étudier la complexité de ces problèmes, il est commode de les voir comme des problèmes d'homomorphismes vers des structures relationnelles. Un axe de recherche actuel est la caractérisation des classes de complexité auxquelles appartient le problème d'homomorphisme, ceci dans la perspective de confirmer des conjectures reliant les propriétés algébriques des structures relationelles à la complexité du problème d'homomorphisme. Cette thèse propose dans un premier temps la caractérisation des digraphes pour lesquels le problème d'homomorphisme avec listes appartient à FO. On montre également que dans le cas du problèmes d'homomorphisme avec listes sur les digraphes télescopiques, les conjectures reliant algèbre et complexité sont confirmées. Dans un deuxième temps, on caractérise les graphes pour lesquels le problème d'homomorphisme avec listes est résoluble par cohérence d'arc. On introduit la notion de polymorphisme monochromatique et on propose un algorithme simple qui résoud le problème d'homomorphisme avec listes si le graphe cible admet un polymorphisme monochromatique TSI d'arité k pour tout k ≥ 2.