928 resultados para digital terrain model
Resumo:
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.
Resumo:
Based on data from R/V Polarstern multibeam sonar surveys between 1984 and 1997 a high resolution bathymetry has been generated for the central Fram Strait. The area ensonified covers approx. 36,500 sqkm between 78°N-80°N and 0°E-7.5°E. Basic outcome of the investigation is a Digital Terrain Model (DTM) with 100 m grid spacing which was utilized for contouring and generation of a new series of bathymetric charts (AWI BCFS).
Resumo:
Kriging is a widely employed method for interpolating and estimating elevations from digital elevation data. Its place of prominence is due to its elegant theoretical foundation and its convenient practical implementation. From an interpolation point of view, kriging is equivalent to a thin-plate spline and is one species among the many in the genus of weighted inverse distance methods, albeit with attractive properties. However, from a statistical point of view, kriging is a best linear unbiased estimator and, consequently, has a place of distinction among all spatial estimators because any other linear estimator that performs as well as kriging (in the least squares sense) must be equivalent to kriging, assuming that the parameters of the semivariogram are known. Therefore, kriging is often held to be the gold standard of digital terrain model elevation estimation. However, I prove that, when used with local support, kriging creates discontinuous digital terrain models, which is to say, surfaces with “rips” and “tears” throughout them. This result is general; it is true for ordinary kriging, kriging with a trend, and other forms. A U.S. Geological Survey (USGS) digital elevation model was analyzed to characterize the distribution of the discontinuities. I show that the magnitude of the discontinuity does not depend on surface gradient but is strongly dependent on the size of the kriging neighborhood.
Resumo:
The topography of the eastern margin of the Porcupine Seabight was surveyed in June 2000 utilizing swath bathymetry. The survey was carried out during RV Polarstern cruise ANT XVII/4 as part of the GEOMOUND project. The main objective was to map and investigate the seafloor topography of this region. The investigated area contains a variability of morphological features such as deep sea channels and giant mounds. The survey was planned and realized on the basis of existing data so as to guarantee the complete coverage of the margin. In order to achieve a resolution of the final digital terrain model (DTM) that meets the project demands, data processing was adjusted accordingly. The grid spacing of the DTM was set to 50 m and an accuracy better than 1% of the water depth was achieved for 96% of the soundings.
Resumo:
This raster layer represents surface elevation and bathymetry data for the Boston Region, Massachusetts. It was created by merging portions of MassGIS Digital Elevation Model 1:5,000 (2005) data with NOAA Estuarine Bathymetric Digital Elevation Models (30 m.) (1998). DEM data was derived from the digital terrain models that were produced as part of the MassGIS 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has a floating point value, in meters, which represents its elevation above or below sea level.
Resumo:
This raster layer represents surface elevation for the Boston Region, Massachusetts. This datalayer is a subset (covering only the Boston region) of the Massachusetts statewide digital elevation model. It was created from the digital terrain models that were produced as part of the 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has an integer value, in meters, which represents its elevation above or below sea level.
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
Multibeam bathymetric data collected in the Puerto Rico Trench and northeastern Caribbean region are compiled into a seamless bathymetric terrain model for broad-scale geological investigations of the trench system. These data, collected during eight separate surveys between 2002 and 2013 and covering almost 180,000 square kilometers, are published here in large-format map sheet and digital spatial data. This report describes the common multibeam data collection and processing methods used to produce the bathymetric terrain model and corresponding data-source polygon. Details documenting the complete provenance of the data are provided in the metadata in the Data Catalog section.
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
The along-track stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with 15 m resolution were used to generate Digital Elevation Model (DEM) on an area with low and near Mean Sea Level (MSL) elevation in Johor, Malaysia. The absolute DEM was generated by using the Rational Polynomial Coefficient (RPC) model which was run on ENVI 4.8 software. In order to generate the absolute DEM, 60 Ground Control Pointes (GCPs) with almost vertical accuracy less than 10 meter extracted from topographic map of the study area. The assessment was carried out on uncorrected and corrected DEM by utilizing dozens of Independent Check Points (ICPs). Consequently, the uncorrected DEM showed the RMSEz of ± 26.43 meter which was decreased to the RMSEz of ± 16.49 meter for the corrected DEM after post-processing. Overall, the corrected DEM of ASTER stereo images met the expectations.
Resumo:
This study aims to assess the accuracy of Digital Elevation Model (DEM) which is generated by using Toutin’s model. Thus, Toutin’s model was run by using OrthoEngineSE of PCI Geomatics 10.3.Thealong-track stereoimages of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) sensor with 15 m resolution were used to produce DEM on an area with low and near Mean Sea Level (MSL) elevation in Johor Malaysia. Despite the satisfactory pre-processing results the visual assessment of the DEM generated from Toutin’s model showed that the DEM contained many outliers and incorrect values. The failure of Toutin’s model may mostly be due to the inaccuracy and insufficiency of ASTER ephemeris data for low terrains as well as huge water body in the stereo images.
Resumo:
Site index prediction models are an important aid for forest management and planning activities. This paper introduces a multiple regression model for spatially mapping and comparing site indices for two Pinus species (Pinus elliottii Engelm. and Queensland hybrid, a P. elliottii x Pinus caribaea Morelet hybrid) based on independent variables derived from two major sources: g-ray spectrometry (potassium (K), thorium (Th), and uranium (U)) and a digital elevation model (elevation, slope, curvature, hillshade, flow accumulation, and distance to streams). In addition, interpolated rainfall was tested. Species were coded as a dichotomous dummy variable; interaction effects between species and the g-ray spectrometric and geomorphologic variables were considered. The model explained up to 60% of the variance of site index and the standard error of estimate was 1.9 m. Uranium, elevation, distance to streams, thorium, and flow accumulation significantly correlate to the spatial variation of the site index of both species, and hillshade, curvature, elevation and slope accounted for the extra variability of one species over the other. The predicted site indices varied between 20.0 and 27.3 m for P. elliottii, and between 23.1 and 33.1 m for Queensland hybrid; the advantage of Queensland hybrid over P. elliottii ranged from 1.8 to 6.8 m, with the mean at 4.0 m. This compartment-based prediction and comparison study provides not only an overview of forest productivity of the whole plantation area studied but also a management tool at compartment scale.