960 resultados para digital terrain model
Resumo:
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.
Resumo:
Based on data from R/V Polarstern multibeam sonar surveys between 1984 and 1997 a high resolution bathymetry has been generated for the central Fram Strait. The area ensonified covers approx. 36,500 sqkm between 78°N-80°N and 0°E-7.5°E. Basic outcome of the investigation is a Digital Terrain Model (DTM) with 100 m grid spacing which was utilized for contouring and generation of a new series of bathymetric charts (AWI BCFS).
Resumo:
Kriging is a widely employed method for interpolating and estimating elevations from digital elevation data. Its place of prominence is due to its elegant theoretical foundation and its convenient practical implementation. From an interpolation point of view, kriging is equivalent to a thin-plate spline and is one species among the many in the genus of weighted inverse distance methods, albeit with attractive properties. However, from a statistical point of view, kriging is a best linear unbiased estimator and, consequently, has a place of distinction among all spatial estimators because any other linear estimator that performs as well as kriging (in the least squares sense) must be equivalent to kriging, assuming that the parameters of the semivariogram are known. Therefore, kriging is often held to be the gold standard of digital terrain model elevation estimation. However, I prove that, when used with local support, kriging creates discontinuous digital terrain models, which is to say, surfaces with “rips” and “tears” throughout them. This result is general; it is true for ordinary kriging, kriging with a trend, and other forms. A U.S. Geological Survey (USGS) digital elevation model was analyzed to characterize the distribution of the discontinuities. I show that the magnitude of the discontinuity does not depend on surface gradient but is strongly dependent on the size of the kriging neighborhood.
Resumo:
The topography of the eastern margin of the Porcupine Seabight was surveyed in June 2000 utilizing swath bathymetry. The survey was carried out during RV Polarstern cruise ANT XVII/4 as part of the GEOMOUND project. The main objective was to map and investigate the seafloor topography of this region. The investigated area contains a variability of morphological features such as deep sea channels and giant mounds. The survey was planned and realized on the basis of existing data so as to guarantee the complete coverage of the margin. In order to achieve a resolution of the final digital terrain model (DTM) that meets the project demands, data processing was adjusted accordingly. The grid spacing of the DTM was set to 50 m and an accuracy better than 1% of the water depth was achieved for 96% of the soundings.
Resumo:
This raster layer represents surface elevation and bathymetry data for the Boston Region, Massachusetts. It was created by merging portions of MassGIS Digital Elevation Model 1:5,000 (2005) data with NOAA Estuarine Bathymetric Digital Elevation Models (30 m.) (1998). DEM data was derived from the digital terrain models that were produced as part of the MassGIS 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has a floating point value, in meters, which represents its elevation above or below sea level.
Resumo:
This raster layer represents surface elevation for the Boston Region, Massachusetts. This datalayer is a subset (covering only the Boston region) of the Massachusetts statewide digital elevation model. It was created from the digital terrain models that were produced as part of the 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has an integer value, in meters, which represents its elevation above or below sea level.
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
Multibeam bathymetric data collected in the Puerto Rico Trench and northeastern Caribbean region are compiled into a seamless bathymetric terrain model for broad-scale geological investigations of the trench system. These data, collected during eight separate surveys between 2002 and 2013 and covering almost 180,000 square kilometers, are published here in large-format map sheet and digital spatial data. This report describes the common multibeam data collection and processing methods used to produce the bathymetric terrain model and corresponding data-source polygon. Details documenting the complete provenance of the data are provided in the metadata in the Data Catalog section.
Resumo:
In 1903, the eastern slope of Turtle Mountain (Alberta) was affected by a 30 M m3-rockslide named Frank Slide that resulted in more than 70 casualties. Assuming that the main discontinuity sets, including bedding, control part of the slope morphology, the structural features of Turtle Mountain were investigated using a digital elevation model (DEM). Using new landscape analysis techniques, we have identified three main joint and fault sets. These results are in agreement with those sets identified through field observations. Landscape analysis techniques, using a DEM, confirm and refine the most recent geology model of the Frank Slide. The rockslide was initiated along bedding and a fault at the base of the slope and propagated up slope by a regressive process following a surface composed of pre-existing discontinuities. The DEM analysis also permits the identification of important geological structures along the 1903 slide scar. Based on the so called Sloping Local Base Level (SLBL) an estimation was made of the present unstable volumes in the main scar delimited by the cracks, and around the south area of the scar (South Peak). The SLBL is a method permitting a geometric interpretation of the failure surface based on a DEM. Finally we propose a failure mechanism permitting the progressive failure of the rock mass that considers gentle dipping wedges (30°). The prisms or wedges defined by two discontinuity sets permit the creation of a failure surface by progressive failure. Such structures are more commonly observed in recent rockslides. This method is efficient and is recommended as a preliminary analysis prior to field investigation.
Resumo:
Turtle Mountain in Alberta, Canada has become an important field laboratory for testing different techniques related to the characterization and monitoring of large slope mass movements as the stability of large portions of the eastern face of the mountain is still questionable. In order to better quantify the volumes potentially unstable and the most probable failure mechanisms and potential consequences, structural analysis and runout modeling were preformed. The structural features of the eastern face were investigated using a high resolution digital elevation model (HRDEM). According to displacement datasets and structural observations, potential failure mechanisms affecting different portions of the mountain have been assessed. The volumes of the different potentially unstable blocks have been calculated using the Sloping Local Base Level (SLBL) method. Based on the volume estimation, two and three dimensional dynamic runout analyses have been performed. Calibration of this analysis is based on the experience from the adjacent Frank Slide and other similar rock avalanches. The results will be used to improve the contingency plans within the hazard area.
High resolution digital elevation model analysis for landslide hazard assessment (Åkerneset, Norway)
Resumo:
Digital Terrain Models (DTMs) are important in geology and geomorphology, since elevation data contains a lot of information pertaining to geomorphological processes that influence the topography. The first derivative of topography is attitude; the second is curvature. GIS tools were developed for derivation of strike, dip, curvature and curvature orientation from Digital Elevation Models (DEMs). A method for displaying both strike and dip simultaneously as colour-coded visualization (AVA) was implemented. A plug-in for calculating strike and dip via Least Squares Regression was created first using VB.NET. Further research produced a more computationally efficient solution, convolution filtering, which was implemented as Python scripts. These scripts were also used for calculation of curvature and curvature orientation. The application of these tools was demonstrated by performing morphometric studies on datasets from Earth and Mars. The tools show promise, however more work is needed to explore their full potential and possible uses.
Resumo:
In the last years, the use of every type of Digital Elevation Models has iimproved. The LiDAR (Light Detection and Ranging) technology, based on the scansion of the territory b airborne laser telemeters, allows the construction of digital Surface Models (DSM), in an easy way by a simple data interpolation